







**Modline** linear modules are ready-to-use linear guide systems with high accuracy, speeds and load performances.

Our experience in the fields of the automotive plants, painting, plate working, manufacturing machines and palletization systems has allowed us to widen our product range with the most advanced technical solutions.

Our products stand out for their:

- high quality and competitive performances (profiles up to12m)
- without play transmissions achieved by high torque couplings
- beams with transversal stiffening ribs and preset for threads on profile ends
- **accurate scaling** and consequent reduced maintenance
- **fast** and accurate **belt** or without play screw drives
- the most complete range of accessories

#### The Modline linear module strong points are:

- Acomplete series of linear units to build up 3 or more axis cartesian robots
- Linear modules with linear guides suitable for parallel assembling
- Choice between strong steel linear guides with rollers or accurate caged ball roller slides and guides
- Choice between mobile carriage or fixed carriage and mobile profile
- Wide and complete solutions for control systems; programmable cards on request
- On request: assembling of E-chain cable carriers, reduction units, stiffening angle bars
- Drawing worked carriage plates
- Accessories and compatibility for pinion/rack drive unit integrated assembling

### **Contents**

### **INTRODUCTION**



| Construction Features                                                 | ML-2  |
|-----------------------------------------------------------------------|-------|
| Assembly and lubrication specifications                               | ML-3  |
| Introduction - operation and control unit - tightening specifications | ML-4  |
| Standard assembly solutions                                           | ML-5  |
| Sizing template                                                       | ML-6  |
| Sizing request form                                                   | ML-7  |
| Preliminary selection table (1-2-3 axes)                              | ML-8  |
| Special applications with standard modules                            | ML-9  |
| Assembly positions and order code setting                             | ML-10 |
| Order Code                                                            | ML-11 |
| Profile specifications                                                | ML-12 |
|                                                                       |       |

#### M MODULES WITH BELT DRIVE



| MCR 65 with rollers                                   | ML-16 |
|-------------------------------------------------------|-------|
| MCH 65 with caged ball roller slides                  | ML-17 |
| MCR 80 with rollers                                   | ML-18 |
| MCH 80 with caged ball roller slides                  | ML-19 |
| MCR 105 with rollers                                  | ML-20 |
| MCH 105 with caged ball roller slides                 | ML-21 |
| MCLL 105 with twin guide and caged ball roller slides | ML-22 |

#### **MODULES WITH SCREW DRIVE**



| MVR 80 - MTR 80 trapezoidal screw and rollers               | ML-23 |
|-------------------------------------------------------------|-------|
| MVR 105 - MTR 105 with ball / trapezoidal screw and rollers | ML-24 |
| MVS 105 - MVH 105 with ball / trapezoidal screw and rollers | ML-25 |
| MVHH 105 with ball screw and caged ball roller slides       | ML-26 |
| TVH 180 with ball screw and caged ball roller slides        | ML-27 |
| TVS 170 with ball screw and caged ball roller slides        | ML-28 |
| TVS 220 with ball screw and caged ball roller slides        | ML-29 |

### T MODULES WITH BELT DRIVE

| - | TCG 100 with shaped rollers                                           | ML-30 |
|---|-----------------------------------------------------------------------|-------|
| 1 | TCH 100 - TCS 100 with caged ball roller slides                       | ML-31 |
|   | TCR 180 - TCG 180 with rollers                                        | ML-32 |
|   | TCH 180 - TCS 180 with caged ball roller slides                       | ML-33 |
|   | TCRQ 170 with rollers                                                 | ML-34 |
|   | TCH 170 - TCS 170 with caged ball roller slides                       | ML-35 |
|   | TCRQ 200 with rollers                                                 | ML-36 |
|   | TCH 200 - TCS 200 with caged ball roller slides                       | ML-37 |
| 1 | TCRQ 220 with rollers                                                 | ML-38 |
|   | TCH 220 - TCS 220 with caged ball roller slides                       | ML-39 |
|   | TCRQ 280 - TCRP 280 with rollers                                      | ML-40 |
|   | TCH 280 - TCS 280 with caged ball roller slides                       | ML-41 |
|   | TCRP 360 with rollers                                                 | ML-42 |
|   | TCH 360 - TCS 360 with caged ball roller slides                       | ML-43 |
|   | TECRQ - TECH 170 (EASY) with roller or recirculating ball slides      | ML-44 |
|   | TECRR 180 - TECH 180 (EASY) with trapezoidal guides and roller slides | ML-45 |

### Z MODULES WITH OMEGA BELT DRIVE

| ZCG 60 with shaped rollers           | ML-4  |
|--------------------------------------|-------|
| ZCL 60 with caged ball roller slides | ML-4  |
| ZCG 90 with shaped rollers           | ML-4  |
| ZCRR 90 with rollers                 | ML-49 |
| ZCL 90 with caged ball roller slides | ML-50 |

This document replaces all previous editions. Due to the constant progress of our research we reserve the right to modify drawings or features without notice. No part of this catalogue may be reproduced without written permission of the copyright owner. All rights reserved. This catalogue has been accurately checked before publishing. However, we disclaim all responsibility in case of errors and omissions.

Edition 03-2016

| ZCY 180 with guide profile and shaped rollers         | ML-51 |
|-------------------------------------------------------|-------|
| ZCRQ 100 with rollers                                 | ML-52 |
| ZCL 100 with caged ball roller slides                 | ML-53 |
| ZCRQ 170 - ZCERQ 170 with rollers                     | ML-54 |
| ZCL 170 - ZCEL 170 with caged ball roller slides      | ML-55 |
| ZCRQ 220 - ZCERQ 220 with rollers                     | ML-56 |
| ZCL 220 - ZCEL 220 with caged ball roller slides      | ML-57 |
| ZMCPLL 105 - ZMCLL 105 with pneumatic counter balance | ML-58 |
| ZMCH 105 with pneumatic counter balance               | ML-59 |

### K MODULES WITH BELT DRIVE

| KCH 100 - 150 - 200 with recirculating ball slides | ML-60 |
|----------------------------------------------------|-------|
|----------------------------------------------------|-------|

### **ACCESSORIES AND APPLICATIONS**





| Drive Pulley Bores for Shrink Discs                             | ML-61 |
|-----------------------------------------------------------------|-------|
| Adapter Flanges                                                 | ML-62 |
| Connecting shafts for parallel modules                          | ML-63 |
| Spare rollers - mounting brackets                               | ML-64 |
| Accessories and screws                                          | ML-65 |
| Front insertable nuts and plates                                | ML-66 |
| Threaded nuts and plates                                        | ML-67 |
| Alignment nuts                                                  | ML-68 |
| Micro-switch supports - cams and cam-holders for micro-switches | ML-69 |
| Special Options                                                 | ML-70 |
| Special applications                                            | ML-71 |
| Anti-drop system - lock-pin device                              | ML-72 |
| Index                                                           | ML-74 |

## **Construction Features**

### Beams

Obtained from Rollon extruded and anodised aluminium alloy profiles. Material features: Al Mg Si 0.5 hardened and tempered, F25 quality, Rm 245 N/mm2, tolerance as per EN 755-9 and EN 12020-2. Profiles have been specially designed to achieve high stiffness and long lengths (up to 12 m), in order to obtain solid, lightweight structures, suitable for the construction of linear transfer machines.

### Plates

Obtained from aluminium alloy rolled sections, tensile strength Rm 290 N/mm2, HB 77, high performance. On request we perform machining work on all standard plates (D code) and according to detailed customer drawings.

### V-shaped guide rails

In hardened and ground high carbon steel (min. hardness 58 HRC). (Anti-oxidation coating upon request).

### Guide rails for caged ball roller slides

S version: high performance, with cage, primary producers. L version: high dynamics, medium loads. H version: standard performance and limited dynamics.

### **Roller slides**

Body in aluminium alloy G AL SI 5 hardened and tempered according to UNI 3600 or Alloy 6082, rollers with double rows of angular contact ball bearings, backlash-free, long life lubrication: Ø 30, Ø 40, Ø 52, Ø 62 mm rollers. Adjustable tolerance between rollers and guide rails. Complete with new felt scrapers.

### Toothed drive and driven pulleys

In C40 steel with coupling toothing on the polyurethane belt, backlash-free, with anti-oxidation treatment. Equipped with large, watertight bearings, capable of withstanding high work performance, due to the use of the multicarriage with durable, alternating backlash-free movements.

### **Toothed belts**

In durable polyurethane, fitted with high-resistance reinforced with high tensile strength steel cords, which prevent the belt from lengthening over time. They are grease, oil and gasoline-proof and can work at temperatures from - 30° up to +80°. The belt is fastened to the plate by means of a hooked support. The belt can be serviced without disassembling the equipment on the plate (standard versions).

### Shrink-discs, shafts and pulleys

All models shown in the catalogue work with the standard conical shrink-disc drive system to lock the driving shaft and the driven shaft if present. Gearbox or shaft adapting plates are supplied upon request, as per drawing.

### Bumper Stops

Important: the rubber stop pads provided with standard linear models are suitable and regarded as static limit switches. For special needs, such as stops if the drive breaks, please specify loads, dynamics, details and discuss the use of specific parts, accessories and devices (reinforced plates and attachments - shock absorbers, anti-drop devices, etc.) with our technical dept.

### Anodizing

We supply all linear modules equipped with: natural, anodised aluminium alloy profiles (min. 11µ), driving heads, driven heads, carriages (MC series), counter plates, in dark bronze anodizing (min. 11µ).

### Anti-oxidation parts and coatings

Modules are also available with anti-oxidation coating. Materials and coatings are selected according to the environment of use (food industry, marine environment, etc.).

### **Assembly specifications**

### Main features of the roller translation system

The translation system consists of a plate to which two roller slides with concentric pins and two with eccentric pins are fixed. The eccentric pins are suitable for adjusting backlash between the roller slide and the sliding track. Check that the angular position of the rollers is such that they can support the max. working load (page ML-10).

Guide rails and roller slides are particularly suitable for use in dusty and aggressive environments.

Important: during adjustment, overloading is easily achieved: this may result in premature wear.

### NB: always keep friction low. If friction is high, loosen and repeat the adjustment.

### Main features of the caged ball roller slides translation system

The sliding system guarantees high performance in terms of precision and load resistance, reduced maintenance and stiffness thanks to the connecting slots of the profile.

All guide rails are directly fixed onto the profile surface, appropriately machined to guarantee geometric and dimensional tolerances, paying attention to the parallelism between them. In large modules, any profile flatness or parallelism errors are corrected by means of the appropriate machining procedures. Please inform our technical dept. of any specific application requirements.

When mounting the linear axes in parallel, it is necessary to not only verify the parallelism between the linear units themselves, but also the coplanarity of the surfaces of the heads so that the maximum error does not exceed 0.3 mm per meter between the parallel modules and within  $\pm$  0.03 mm compared to the parallelism.

### Lubrication

### Roller slides and caged ball roller slides

Roller slides are provided with a permanent lubrication system which, if properly used, eliminates the need for any further maintenance, also considering the average life of any handling device. As for screw modules, the caged ball or V screw requires periodical lubrication.

For applications on plants with a high number of daily cycles, or with a significant build-up of impurities, please check the need for lubrication, seals and additional tanks with our technical dept. Do not use solvents to clean rollers or roller slides, as you could unintentionally remove the grease lubricating coat applied to the rolling elements during assembly.

Use lithium soap based mineral grease according to DIN 51825 - K3N. Read the instruction manual





Complete central lubrication system. Grease cartridge upon request.

#### **Guide rails**

If properly assembled, guide rails do not require any lubrication, which would attract impurities and have negative consequences. Should there be any surface defects on the guide rails and/or on the rolling parts, such as pitting or erosion, this might be due to an excessive load. In this case, all worn parts must be replaced and the load geometry and alignment checked.

Μ

## Introduction - operation and control unit

These units can be equipped with gearboxes, servomotors, mechanical limit switches, proximity switches and various accessories, such as energy chains, interface plates, fixing supports.

Our technical dept. is at your complete disposal for any scaling requirements and the choice of linear actuator suitable to achieve the required performance levels. We can draw on our experience to help our customers in their choice of linear unit and the following parts: gearboxes: worm screw, planetary, bevel;

motors: stepper, brushless, DC, asynchronous.

### **Application examples:**

glue dispensing units paint or resin distribution units load/unload of manufacturing machines pick and place systems control and sensing instrument handling drilling PCB boards cartesian robots with 2, 3 or more axes

## **Tightening specifications**

During set-up, make sure all parts are locked with the appropriate screws and with the right tightening torques.

# Standard assembly solutions



## **Sizing template**



## **Sizing request form**

Modline

Μ

For a proper definition of the linear units, fill in the scaling request form and send it to the Technical Support Department.

| Date:Request n° |  |
|-----------------|--|
| Filled in by    |  |
| Company         |  |
| Address         |  |
| PhoneFax        |  |
| E-mail          |  |

### Sizing template



### **MODLINE** linear modules

ASSEMBLY SOLUTIONS (see page ML-5) no. Total length Total working load including EOAT (add Z axis for Y and X axes) Equipment weight on carriage (gearbox, cylinder, OPTIONAL) Weight distributed on the beam (energy chain) Profile supports Max. projection (any cantilever, the largest) Max. span Offset load's centre of gravity (X-axis) Offset load's centre of gravity (Y-axis) Offset load's centre of gravity (Z-axis) Any additional force Offset additional force (X-axis) Offset additional force (Y-axis) Offset additional force (Z-axis) Possible distance between the carriages Transmission performance Assembly: vertical= 90° - slope = 30°, 45°, 60° - horizontal Stroke Speed Acceleration Cycle time Positioning accuracy Repeatability Work environment (temperature and cleanliness) Daily working cycles Minimum service life requested

Working cycle

t [s]

v [m/s]



### Example working cycle



| Notes: |      |  |
|--------|------|--|
|        |      |  |
|        | <br> |  |
|        | <br> |  |
|        |      |  |
|        |      |  |

## Special applications with standard modules



## Assembly positions and load direction

For rollers profiles.



## Simplified code setting of the module

| EXAMPLE           |                                                                                                                                                                                         | т                                          | С        | S     | Μ | 280 | mm/mm/ |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------|-------|---|-----|--------|--|
| SERIES            | K= light<br>M= compact closed section<br>T= heavy<br>Z= vertical omega belt                                                                                                             |                                            |          |       |   |     |        |  |
| HANDLING          | C= belt CE= large belt<br>V= ball screw<br>T= trapezoidal screw<br>N= idle                                                                                                              |                                            |          |       |   |     |        |  |
| SLIDE             | RR / RQ /RP = guide rails for roller s<br>S= guide rails for caged balls ro<br>H= guide rails for caged ball ro<br>G= guide rails for cylindrical sh<br>Y= guide rails for polyamide sh | oller slides<br>Iler slides<br>Naped rolle | rs       | o Ø62 |   |     |        |  |
| MACHINING PROFILE | M= profile with machined guide pl                                                                                                                                                       | ane and ra                                 | ck plane | •     |   |     |        |  |
| PROFILE SIZE      |                                                                                                                                                                                         |                                            |          |       |   |     |        |  |
| STROKE / Length   | "mm" = X-axis / Y-axis / Z-axis                                                                                                                                                         |                                            |          |       |   |     |        |  |
| ACCESSORY CODES   | Various accessory codes                                                                                                                                                                 |                                            |          |       |   |     |        |  |

Modline

M L

## **Order Code**



#### Available upon request

· Supply and assembly of cams and cam-holders for micro-switches, energy chains, etc.

Assembly of optional accessories SUPPLIED BY THE CUSTOMER.

· Machining to specifications (drilling, milling) on the free surfaces of the plates or profile

• Customised applications (optional: structural inspections for special loads, Cartesian robots with three or more axes, linear units with several plates, etc.)

• Our technical dept. is at your complete disposal to examine the most suitable applications for your requirements.











| Profile              | M 65x67    |                    |
|----------------------|------------|--------------------|
| Weight per metre     | 4.5        | [kg/m]             |
| Max. length          | 9          | [m]                |
| Moment of inertia ly | 683,900    | [mm <sup>4</sup> ] |
| Moment of inertia Ix | 796,750    | [mm <sup>4</sup> ] |
| Module               | MCR/L/H 65 |                    |

| Profile              | M 80x80                 |                    |
|----------------------|-------------------------|--------------------|
| Weight per metre     | 6.3                     | [kg/m]             |
| Max. length          | 8                       | [m]                |
| Moment of inertia ly | 1,430,000               | [mm <sup>4</sup> ] |
| Moment of inertia Ix | 1,780,000               | [mm <sup>4</sup> ] |
| Module               | MCR/S/H 80 - MVR/S/T 80 |                    |

| Profile              | M 105x105             |                    |
|----------------------|-----------------------|--------------------|
| Weight per metre     | 11                    | [kg/m]             |
| Max. length          | 7,6                   | [m]                |
| Moment of inertia ly | 4,466,000             | [mm <sup>4</sup> ] |
| Moment of inertia Ix | 5,660,000             | [mm <sup>4</sup> ] |
| Module               | MCR/S/H - MVR/S/T 105 |                    |

| Profile (60x60)      | F01-1    |                    |
|----------------------|----------|--------------------|
| Weight per metre     | 3.6      | [kg/m]             |
| Max. length          | 6        | [m]                |
| Moment of inertia ly | 466,600  | [mm <sup>4</sup> ] |
| Moment of inertia Ix | 466,600  | [mm <sup>4</sup> ] |
| Module               | ZCG/L 60 |                    |

| Profile (90x90)      | E01-4          |                     |  |
|----------------------|----------------|---------------------|--|
| Weight per metre     | 6              | [kg/m]              |  |
| Max. length          | 6              | [m]                 |  |
| Moment of inertia ly | 2,027,000      | [mm <sup>4</sup> ]  |  |
| Moment of inertia Ix | 2,027,000      | [mm <sup>4</sup> ]  |  |
| Module               | ZCG - ZCL - ZC | ZCG - ZCL - ZCRR 90 |  |

### Modline



| Profile (50x100)     | MA 1-2    | MA 1-4      |                    |
|----------------------|-----------|-------------|--------------------|
| Weight per metre     | 5.3       | 5.2         | [kg/m]             |
| Max. length          | 6         | 6           | [m]                |
| Moment of inertia ly | 502,800   | 543,100     | [mm <sup>4</sup> ] |
| Moment of inertia Ix | 1,986,600 | 2,036,700   | [mm <sup>4</sup> ] |
| Module               | ZCR/L 100 | H TCG/TCS/H | 1 100              |

| Profile (100x100)    | MA 1-5    |                    |
|----------------------|-----------|--------------------|
| Weight per metre     | 9.5       | [kg/m]             |
| Max. length          | 6         | [m]                |
| Moment of inertia ly | 3,650,000 | [mm <sup>4</sup> ] |
| Moment of inertia Ix | 3,800,000 | [mm <sup>4</sup> ] |
| Module               | ZCR/L 100 |                    |

**E01-5** 12.4

4,420,000

15,180,000

8

[kg/m]

[mm<sup>4</sup>]

[mm<sup>4</sup>]

[m]





Profile (90x180)

Weight per metre

Moment of inertia ly

Moment of inertia Ix

Max. length

| 7400568 energy chain support profile |     |      |  |
|--------------------------------------|-----|------|--|
| Weight                               | 1.5 | kg/m |  |
| Available length                     | 6   | m    |  |





| Statyca (120x170)    |                  |                    |
|----------------------|------------------|--------------------|
| Weight per metre     | 17               | [kg/m]             |
| Max. length          | 12               | [m]                |
| Moment of inertia ly | 10,200,000       | [mm <sup>4</sup> ] |
| Moment of inertia Ix | 20,360,000       | [mm <sup>4</sup> ] |
| Module               | TCR/S/H 170 - Z0 | CR/L 170           |



| Valyda (120x200)     |             |                    |
|----------------------|-------------|--------------------|
| Weight per metre     | 21          | [kg/m]             |
| Max. length          | 12          | [m]                |
| Moment of inertia ly | 12,980,000  | [mm <sup>4</sup> ] |
| Moment of inertia Ix | 32,980,000  | [mm <sup>4</sup> ] |
| Module               | TCR/S/H 200 |                    |
| Anodised up to       | 9           | [m]                |



| Logyca (120x220)     |                |                    |
|----------------------|----------------|--------------------|
| Weight per metre     | 25             | [kg/m]             |
| Max. length          | 12             | [m]                |
| Moment of inertia ly | 15,650,000     | [mm <sup>4</sup> ] |
| Moment of inertia Ix | 46,550,000     | [mm <sup>4</sup> ] |
| Module               | TCR/S/H 220-ZC | R/L/ 220           |
| Anodised up to       | 9              | [m]                |







| SYS 1-G                                               |            |                    |
|-------------------------------------------------------|------------|--------------------|
| Weight per metre                                      | 12         | [kg/m]             |
| Max. length                                           | 7.5        | [m]                |
| Moment of inertia ly                                  | 1,600,000  | [@m <sup>4</sup> ] |
| Moment of inertia Ix                                  | 12,350,000 | [mm <sup>4</sup> ] |
| Module                                                | ZCY180     |                    |
| *Holes for M16 thread and for PVS connecting elements |            |                    |

### **MCR 65**

Registered model

### HARDENED GUIDE RAILS AND PROFILED ROLLERS

Option: lighter version with pulley seats integrated within the profile Accessories: see page ML-10



SCREWS FOR BELT TENSION





| Performances      | MCR 65 |                     |  |
|-------------------|--------|---------------------|--|
| Max. stroke       | 5,830  | [mm]                |  |
| Max. speed        | 4      | [m/s]               |  |
| Max. acceleration | 20     | [m/s <sup>2</sup> ] |  |
| Repeatability     | ± 0,1  | [mm]                |  |
| No load torque    | -      | [mm]                |  |

| Suggested working load conditions |                     |                     |                     |                    |                    |                    |
|-----------------------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|
| Module                            | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |
| MCR 65                            | 45                  | 94                  | 34                  | 1,180              | 670                | 1,000              |

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery.

In case of peak forces acting together please ask the technical dept

| Data                 |            |                      |
|----------------------|------------|----------------------|
| Belt                 | 32AT05     |                      |
| Slide                | Rollers: 4 | 4 Ø 24 - 4 Ø 22 [mm] |
| Load bearing profile | 65x67      | (see page ML-11)     |
| Pulley Ø             | 50.93      | [mm]                 |
| Lead                 | 160        | [mm/rev]             |

| Mx Fy My Fy           |  |
|-----------------------|--|
| Fx= Max belt strength |  |

Fz Mz**ʻ**P

| Weights                |                        |                     |
|------------------------|------------------------|---------------------|
| Inertia of the pulley  | -                      | [kgm <sup>2</sup> ] |
| Belt weight            | 0.22                   | [kg/m]              |
| Carriage weight        | 1                      | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =4.4 | [kg]                |
| 1,000 mm profile       | q=5.4                  | [kg]                |

Option: lighter version with pulley seats integrated within the profile Accessories: see page ML-10



SCREWS FOR BELT TENSION



| 7,830 | [mm]                |
|-------|---------------------|
| 3     | [m/s]               |
| 30    | [m/s <sup>2</sup> ] |
| ± 0.1 | [mm]                |
| -     | [mm]                |
|       | 3<br>30<br>± 0.1    |

| Suggested working load conditions |                     |                     |                     |                    |                    |                    |                     |
|-----------------------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|---------------------|
| Module                            | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] | F <sub>zB</sub> [N] |
| MCH 65                            | 19                  | 120                 | 120                 | 1,180              | 1,960              | 1,960              | 1,960               |

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery.

In case of peak forces acting together please ask the technical dept

| Data                 |           |                          |
|----------------------|-----------|--------------------------|
| Belt                 | 32AT05    |                          |
| Slide                | 2 caged b | alls roller slides15[mm] |
| Load bearing profile | 65x67     | (see page ML-11)         |
| Pulley Ø             | 50.93     | [mm]                     |
| Lead                 | 160       | [mm/rev]                 |

|           | Fx= Max belt strength |                     |  |
|-----------|-----------------------|---------------------|--|
|           |                       |                     |  |
| he pulley | -                     | [kgm <sup>2</sup> ] |  |
| nt        | 0.22                  | [kg/m]              |  |
|           |                       |                     |  |

| Inertia of the pulley  | -                      | [kgm <sup>2</sup> ] |
|------------------------|------------------------|---------------------|
| Belt weight            | 0.22                   | [kg/m]              |
| Carriage weight        | 1,1                    | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =4.2 | [kg]                |
| 1,000 mm profile       | q=6.2                  | [kg]                |

Weights



**MCR 80** 

Registered model

HARDENED GUIDE RAILS AND PROFILED ROLLERS

Option: version with additional belt protection (see page ML-70) Option: short carriage version - code C Accessories: see page ML-10



| Performances      | MCR 80 |                     |  |
|-------------------|--------|---------------------|--|
| Max. stroke       | 5,700  | [mm]                |  |
| Max. speed        | 5      | [m/s]               |  |
| Max. acceleration | 20     | [m/s <sup>2</sup> ] |  |
| Repeatability     | ± 0.1  | [mm]                |  |
| No load torque    | 0.7    | [Nm]                |  |

| Suggested working load conditions |                     |                     |                     |                    |                    |                    |  |
|-----------------------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|--|
| Module                            | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |  |
| MCR 80                            | 51                  | 200                 | 80                  | 2,150              | 850                | 1,400              |  |

| Suggested working load conditions short carriage option |                     |                     |                     |                    |                    |                    |
|---------------------------------------------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|
| Module                                                  | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |
| MCR 80                                                  | .C 51               | 100                 | 40                  | 2,150              | 850                | 1,400              |

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery.

| In case of peak forces acting together | please ask the technical dept |
|----------------------------------------|-------------------------------|
|----------------------------------------|-------------------------------|

| Data                 |            |                      |
|----------------------|------------|----------------------|
| Belt                 | 32AT10     |                      |
| Slide                | Rollers: 4 | 4 Ø 24 - 4 Ø 22 [mm] |
| Load bearing profile | 80x80      | (see page ML-11)     |
| Pulley Ø             | 70.03      | [mm]                 |
| Lead                 | 220        | [mm/rev]             |

| Weights                |                      |                     |
|------------------------|----------------------|---------------------|
| Inertia of the pulley  | 0.0010               | [kgm <sup>2</sup> ] |
| Belt weight            | 0.38                 | [kg/m]              |
| Carriage weight        | 2                    | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =8 | [kg]                |
| 1,000 mm profile       | q=7                  | [kg]                |

To calculate the module weight use the following formula: M=Mbase+q•strokemax/1,000 Strokemax [mm]

### N



78

Modline



Fx= Max belt strength

GUIDE RAILS WITH CAGED BALL RUNNER BLOCKS

Option: version with additional belt protection (see page ML-70) Option: short carriage version - code C Accessories: see page ML-10





**MCH 80 Performances** Max. stroke 5,700 [mm] Max. speed 5 [m/s] Max. acceleration 40 [m/s<sup>2</sup>] Repeatability ± 0,1 [mm] No load torque 0.9 [Nm]

| Suggested working load conditions |                     |                     |                     |                    |                    |                    |  |
|-----------------------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|--|
| Module                            | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |  |
| MCH 80                            | 30                  | 290                 | 290                 | 2,150              | 2,900              | 2,900              |  |

| Suggested working load conditions |                     |                     |                     |                    |                    |                    |  |
|-----------------------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|--|
| Module                            | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |  |
| MCH 80                            | C 14                | 15                  | 12                  | 2,150              | 1,450              | 1,450              |  |

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

| Data                    | MCS80 - MCH80                       |
|-------------------------|-------------------------------------|
| Belt                    | 32AT10                              |
| Slide                   | 2 caged ball roller slides size 15* |
| Load bearing profile    | 80x80 (see page ML- 11)             |
| Pulley Ø                | 70.03 [mm]                          |
| Lead                    | 220 [mm/rev]                        |
| * Short carriage option | 1 pad                               |

To calculate the module weight use the following formula: M=M<sub>base</sub>+q•stroke<sub>max</sub>/1,000 Stroke<sub>max</sub> [mm]

78

Mz My Fx

Fx= Max belt strength

| Weights                | MCS80 - I            | NCH80               |
|------------------------|----------------------|---------------------|
| Inertia of the pulley  | 0.0010               | [kgm <sup>2</sup> ] |
| Belt weight            | 0.38                 | [kg/m]              |
| Carriage weight        | 2.6                  | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =9 | [kg]                |
| 1,000 mm profile       | q=8.2                | [kg]                |

SCREWS FOR BELT TENSION

Registered model

**MCH 80** 

ML-18

**MCR 105** 

Registered model

HARDENED GUIDE RAILS AND PROFILED ROLLERS

Option: version with additional belt protection (see page ML-70) \*Option: short carriage version - (code C) or long carriage (code L) Accessories: see page ML-10



| Performances      | MCR 105 |                     |
|-------------------|---------|---------------------|
| Max. stroke       | 10,100  | [mm]                |
| Max. speed        | 5       | [m/s]               |
| Max. acceleration | 20      | [m/s <sup>2</sup> ] |
| Repeatability     | ± 0.1   | [mm]                |
| No load torque    | 1.2     | [Nm]                |

| Suggeste | d working           | g load con          | ditions             |                    |                    |                    |
|----------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|
| Module   | M <sub>x</sub> [Nm] | M <sub>v</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>v</sub> [N] | F <sub>z</sub> [N] |
| MCR 105  | 185                 | 580                 | 220                 | 3,300              | 1,500              | 2,950              |
|          |                     |                     |                     |                    |                    |                    |
|          |                     |                     | ditions sho         | -,                 | .,                 | -                  |

| Suggested working load conditions short carriage option |                     |                     |                     |                    |                    |                    |
|---------------------------------------------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|
| Module                                                  | M <sub>x</sub> [Nm] | M <sub>v</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>v</sub> [N] | F <sub>z</sub> [N] |
| MCR 105C                                                | 185                 | 330                 | 130                 | 3,300              | 1,450              | 2,950              |

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery.

In case of peak forces acting together please ask the technical dept

| Data                 |            |                    |
|----------------------|------------|--------------------|
| Belt                 | 40AT10     |                    |
| Slide                | Rollers: 4 | Ø 37 - 4 Ø 35 [mm] |
| Load bearing profile | 105x105    | (see page ML-11)   |
| Pulley Ø             | 92.31      | [mm]               |
| Lead                 | 290        | [mm/rev]           |

15,5 8 05



Modline



Fx= Max belt strength

| Weights                |                         |                     |
|------------------------|-------------------------|---------------------|
| Inertia of the pulley  | 0.0037                  | [kgm <sup>2</sup> ] |
| Belt weight            | 0.47                    | [kg/m]              |
| Carriage weight        | 3.5                     | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =16.5 | [kg]                |
| 1,000 mm profile       | q=13                    | [kg]                |

**MCH 105** 

Registered model

Option: version with additional belt protection (see page ML-70) \*Option: short carriage version - (code C)





| Performances      | MCH 10 | 05                  |
|-------------------|--------|---------------------|
| Max. stroke       | 10,100 | [mm]                |
| Max. speed        | 5      | [m/s]               |
| Max. acceleration | 50     | [m/s <sup>2</sup> ] |
| Repeatability     | ± 0.1  | [mm]                |
| No load torque    | 1.5    | [Nm]                |

| Suggested working load conditions |                     |                     |                     |                    |                    |                    |
|-----------------------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|
| Module                            | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |
| MCH 105                           | 116                 | 600                 | 600                 | 3,300              | 6,030              | 6,030              |

| Suggested | working I           | oad condi           | tions shor          | t carriage         | option             |                    |
|-----------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|
| Module    | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |
| MCH 105C  | 36                  | 30                  | 30                  | 3,300              | 3,018              | 3,018              |

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

| <b>Constuctive data</b> |                           |             |
|-------------------------|---------------------------|-------------|
| Belt                    | 40AT10                    |             |
| Slide                   | 2 caged ball roller slide | es size 20* |
| Load bearing profile    | 105x105 (see p            | age ML- 11) |
| Pulley Ø                | 92.31                     | [mm]        |
| Lead                    | 290                       | [mm/rev]    |
| * Short carriage optio  | n 1 nad                   |             |

Short carriage option 1 pad

To calculate the module weight use the following formula: M=Mbase+q•strokemax/1,000 Strokemax [mm]

| SCREWS FOR BELT TENSION |  |  |  |  |
|-------------------------|--|--|--|--|
|                         |  |  |  |  |
|                         |  |  |  |  |





Fx= Max belt strength

| Weights                |                       |                     |
|------------------------|-----------------------|---------------------|
| Inertia of the pulley  | 0.0037                | [kgm <sup>2</sup> ] |
| Belt weight            | 0.47                  | [kg/m]              |
| Carriage weight        | 4.5                   | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =18 | [kg]                |
| 1,000 mm profile       | q=14.3                | [kg]                |

Modline

M L

Registered model

Accessories: see page ML-10



### Total length =615 + Max. Stroke



| Performances      | MCHH 105 |                     |
|-------------------|----------|---------------------|
| Max. stroke       | 7,400    | [mm]                |
| Max. speed        | 5        | [m/s]               |
| Max. acceleration | 50       | [m/s <sup>2</sup> ] |
| Repeatability     | ± 0.1    | [mm]                |
| No load torque    | 2.2      | [Nm]                |

| Suggested working load conditions |                     |                     |                     |                    |                    |                    |
|-----------------------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|
| Module                            | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |
| MCHH 10                           | 5 210               | 1.033               | 700                 | 3,300              | 7,200              | 6,210              |

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

| Data                 |                           |                |  |
|----------------------|---------------------------|----------------|--|
| Belt                 | 40ATL10                   |                |  |
| Slide                | 4 caged ball roller       | slides size 15 |  |
| Load bearing profile | 105x105 (see page ML- 11) |                |  |
| Pulley Ø             | 92.31                     | [mm]           |  |
| Lead                 | 290                       | [mm/rev]       |  |







Fx= Max belt strength

| Weights                |                       |                     |
|------------------------|-----------------------|---------------------|
| Inertia of the pulley  | 0.0037                | [kgm <sup>2</sup> ] |
| Belt weight            | 0.47                  | [kg/m]              |
| Carriage weight        | 4.5                   | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =18 | [kg]                |
| 1,000 mm di profile    | q=14                  | [kg]                |

### **MVR 80**

### HARDENED GUIDES WITH CYLINDRICAL ROLLERS - TRAPEZOIDAL BALL SCREW



The values shown refer to maximum performance with each force acting individually. The dynamic data shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery.

(\*) With a pitch of 5 mm

| Fx= Max belt | strength |
|--------------|----------|
|--------------|----------|

| Data                |                            |          |
|---------------------|----------------------------|----------|
| Slide               | Rollers: 4 Ø24 - 4 Ø       | ð22 [mm] |
| Beam                | 80x80 (see page            | ML-11)   |
| Øscrew              | 16                         | [mm]     |
| Length of the screw | 367+ <sub>max</sub> stroke | [mm]     |

| Weights                |                                 |                     |
|------------------------|---------------------------------|---------------------|
| Inertia of the worm    | 0.0003 • L. screw(m)            | [kgm <sup>2</sup> ] |
| Carriage weight        | 2.5 c.a.                        | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> = 5.5 approx. | [kg]                |
| 1,000 mm profile       | q=8 approx.                     | [kg]                |

Modline

Μ

Registered model



| Suggested working load conditions |                     |                     |                     |                    |                    |                    |
|-----------------------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|
| Module                            | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |
| MVR 105                           | 185                 | 580                 | 220                 | *2,000             | 1,500              | 2,950              |

The values shown refer to maximum performance with each force acting individually. The dynamic data shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery.

(\*) With a pitch of 5 mm

| FZ  |       |
|-----|-------|
| Mze |       |
|     |       |
|     | My Fy |
| Mx  |       |
| Fx  |       |

Fx= Max belt strength

| Weights                |                       |                     |
|------------------------|-----------------------|---------------------|
| Inertia of the worm    | 0.0003 • L. screw(m)  | [kgm <sup>2</sup> ] |
| Carriage weight        | 4 approx.             | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =11 | [kg]                |
| 1,000 mm profile       | q=17.2 approx.        | [kg]                |

| Slide               | Rollers: 4 Ø 37 - 4        | Ø 35 [mm]  | In  |
|---------------------|----------------------------|------------|-----|
| Beam                | 105x105 (see pa            | age ML-11) | Ca  |
| Ø screw             | 25                         | [mm]       | Ba  |
| Length of the screw | 440+ <sub>max</sub> stroke | [mm]       | 1,0 |

Data



| Suggested working load conditions |                     |                     |                     |                    |                    |                    |
|-----------------------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|
| Module                            | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |
| MVS 105                           | 156                 | 800                 | 800                 | 3,000(*)           | 9,550              | 9,550              |
| MVH 105                           | 116                 | 600                 | 600                 | 3,000(*)           | 6,030              | 6,030              |

The values shown refer to maximum performance with each force acting individually. The dynamic data shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. (\*) With a pitch of 5 mm

| Data                |                            |             |
|---------------------|----------------------------|-------------|
| Slide               | 2 caged ball roller slid   | les size 20 |
| Beam                | 105x105 (see page          | ML- 11)     |
| Øscrew              | 25                         | [mm]        |
| Length of the screw | 440+ <sub>max</sub> stroke | [mm]        |





| Weights                |                       |           |
|------------------------|-----------------------|-----------|
| Inertia of the worm    | 0.0003 • L. screw(m   | n) [kgm²] |
| Carriage weight        | 4 approx.             | [kg]      |
| Base module (stroke=0) | M <sub>base</sub> =12 | [kg]      |
| 1,000 mm profile       | q=17.2 approx.        | [kg]      |

Mx

Fx 🖍

Modline

Μ

Registered model



The values shown refer to maximum performance with each force acting individually. The dynamic data shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery.

| Data                |                           |            |
|---------------------|---------------------------|------------|
| Slide               | 4 caged ball roller slid  | es size 15 |
| Beam                | 105x105 (see pag          | e ML- 11)  |
| Øscrew              | 25                        | [mm]       |
| Length of the screw | 440+stroke <sub>max</sub> | [mm]       |

(\*) With a pitch of 5 mm



Fx= Max belt strength

| Weights                |                       |                     |
|------------------------|-----------------------|---------------------|
| Inertia of the worm    | 0,0003 • L. screw(m)  | [kgm <sup>2</sup> ] |
| Carriage weight        | 4 c.a.                | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =13 | [kg]                |
| 1,000 mm profile       | q=17,5 approx.        | [kg]                |

Fx



\*valore indicativo



Max. stroke-speed limit over which some support bearings are required (SI) to avoid an excessive screw vibration. The working point marked inside the broken line is not recommended.

| Performances |                                                | <b>TVH</b> 180       |                         |
|--------------|------------------------------------------------|----------------------|-------------------------|
| Max Stroke   | Pitch 5 -10 = 4550                             | Pitch 25 = 5150      | [mm]                    |
| Max Speed    | Pitch 5 [mm]<br>Pitch 10 [mm]<br>Pitch 25 [mm] | 0,15<br>0,30<br>0,75 | [m/s]<br>[m/s]<br>[m/s] |

| Suggested working load conditions |                     |                     |                     |                    |                    |                    |  |
|-----------------------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|--|
| Module                            | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |  |
| TVH 180                           | 600                 | 850                 | 850                 | *3.000             | 9.200              | 9.200              |  |

The values shown refer to maximum performance with each force acting individually. The dynamic data shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery.
(\*) With a pitch of 5 mm

| Data   |                                    |
|--------|------------------------------------|
| Slide  | 4 caged ball roller slides size 20 |
| Beam   | E01-5 (see page ML-12)             |
| Øscrew | 25 [mm]                            |
| Bellow | heat-sealed, plastic               |







Fx= Max belt strength

| Weights                |                        |                        |
|------------------------|------------------------|------------------------|
| Inertia of the worm    | 0,0003 • L. screw(     | m) [kgm <sup>2</sup> ] |
| Carriage weight        | 7                      | [kg]                   |
| Base module (stroke=0) | M <sub>base</sub> = 20 | [kg]                   |
| 1,000 mm profile       | q= 20                  | [kg]                   |

Ø22 h8 24,5 99 42 Total Length = 595 + 2x(Stroke/9) + Stroke Stroke / 9 480 Stroke / 9 23 74 <u>1</u>8 Ø 100 h7 90 15 150 150 150 \*approx. value 220 10000 [rpm] Ľ 85 22 Max. stroke-speed limit over which some 2600 85 support bearings are required (SI) to avoid M8 650 an excessive screw vibration. The working 290 point marked inside the broken line is not 162 recommended. 100 0 500 1000 2000 3000 4000 5000 20 Length [mm] 100 **TVS 170** Performances Max. stroke 4,000 [mm] 166 120 Pitch 5 Pitch 10 Pitch 20 0.15 [mm] [m/s] Max. speed 0.30 [mm] [m/s 0.75 [mm] [m/s]

1.00

[m/s]

| Suggested working load conditions |                     |                     |                     |                    |                    |                    |  |
|-----------------------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|--|
| Module                            | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |  |
| TVS 170                           | 720                 | 2,050               | 2,050               | *6,000             | 11,950             | 11,950             |  |

[mm]

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery.

In case of peak forces acting together please ask the technical dept.

### (\*) With a pitch of 10 mm

| Data   |                                    |
|--------|------------------------------------|
| Slide  | 4 caged ball roller slides size 20 |
| Beam   | Statyca (see page ML-13)           |
| Øscrew | 32 [mm]                            |
| Bellow | heat-sealed, plastic               |

Pitch 32

 $F_x$   $F_x$ 

| Weights                |                        |                         |
|------------------------|------------------------|-------------------------|
| Inertia of the worm    | 0,0006 • L. screw(     | (m) [kgm <sup>2</sup> ] |
| Carriage weight        | 11                     | [kg]                    |
| Base module (stroke=0) | M <sub>base</sub> = 36 | [kg]                    |
| 1,000 mm profile       | q= 28                  | [kg]                    |

To calculate the module weight use the following formula: **M=M**<sub>base</sub>+q•stroke<sub>max</sub>/1,000 Stroke<sub>max</sub> [mm]

Modline





Max. stroke-speed limit over which some support bearings are required (SI) to avoid an excessive screw vibration. The working point marked inside the broken line is not recommended.

| Performances |                                             |                              | <b>TVS 22</b> 0              |                                  |
|--------------|---------------------------------------------|------------------------------|------------------------------|----------------------------------|
| Max. stroke  |                                             |                              | 4,000                        | [mm]                             |
| Max. speed   | Pitch 5<br>Pitch 10<br>Pitch 20<br>Pitch 32 | [mm]<br>[mm]<br>[mm]<br>[mm] | 0.15<br>0.30<br>0.75<br>1.00 | [m/s]<br>[m/s]<br>[m/s]<br>[m/s] |

| Suggeste | ed workin           | g load con          | ditions             |                    |                    |                    |
|----------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|
| Module   | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |
| TVS 220  | 1,300               | 3,200               | 3,200               | *6,000             | 18,300             | 18,300             |

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery.

In case of peak forces acting together please ask the technical dept.

(\*) With a pitch of 10 mm

| Data   |                   |                   |
|--------|-------------------|-------------------|
| Slide  | 4 caged ball roll | er slides size 25 |
| Beam   | Logyca (see       | page ML-13)       |
| Øscrew | 32                | [mm]              |
| Bellow | heat-sealed.      | plastic           |





Fx= Max belt strength

| Weights                |                      |                       |
|------------------------|----------------------|-----------------------|
| Inertia of the worm    | 0.0006 • L. screw(m) | ) [kgm <sup>2</sup> ] |
| Carriage weight        | 13                   | [kg]                  |
| Base module (stroke=0) | $M_{base} = 44$      | [kg]                  |
| 1,000 mm profile       | q= 37                | [kg]                  |

HARDENED GUIDE RAILS AND CYLINDRICAL SHAPED ROLLERS

### **TCG 100**

Registered model



| Suggest | ed workin           | ig load cor         | nditions            |                    |                    |                    |
|---------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|
| Module  | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |
| TCG 100 | 40                  | 120                 | 200                 | 1,100              | 1,700              | 1,200              |

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

### Assembly positions and load direction, see page ML-10

| Data                               |                           |
|------------------------------------|---------------------------|
| Belt                               | 25AT5                     |
| Slide                              | 4 shaped rollers Ø35 [mm] |
| Load bearing profile               | MA 1-4 (see page ML-12)   |
| Pulley Ø                           | 50.93 [mm]                |
| Linear displacement per revolution | 160 [mm]                  |

| Weights                |                        |                     |
|------------------------|------------------------|---------------------|
| Inertia of the pulley  | -                      | [kgm <sup>2</sup> ] |
| Belt weight            | 0.21                   | [kg/m]              |
| Carriage weight        | 2.5                    | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =6.4 | [kg]                |
| 1,000 mm profile       | q=8.3                  | [kg]                |

Mx

Fx= Max belt strength



| Suggest | ted workin          | ig load cor         | nditions            |                    |                    |                    |
|---------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|
| Module  | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |
| TCH 100 | 138                 | 324                 | 324                 | 1,180              | 4,100              | 4,100              |
| TCS 100 | 150                 | 324                 | 324                 | 1,180              | 4,100              | 4,100              |

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

| Data                          |            |                         |
|-------------------------------|------------|-------------------------|
| Belt                          | 25AT5      |                         |
| Sliding                       | 4 caged ba | Il roller slides size15 |
| Load bearing profile          | MA 1-4     | (see page ML- 12)       |
| Pulley Ø                      | 50.93      | [mm]                    |
| Linear displacement per revol | lution 160 | [mm]                    |

| Weights                |                        |                     |
|------------------------|------------------------|---------------------|
| Inertia of the pulley  | -                      | [kgm <sup>2</sup> ] |
| Belt weight            | 0.21                   | [kg/m]              |
| Carriage weight        | 2.6                    | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =6.5 | [kg]                |
| 1,000 mm profile       | q=9.2                  | [kg]                |

To calculate the module weight use the following formula: M=M<sub>base</sub>+q•stroke<sub>max</sub>/1,000 Stroke<sub>max</sub> [mm]



Fx= Max belt strength

## TCRQ 180 e TCG 180

### WITH V-SHAPED GUIDE RAILS AND ROLLER SLIDES OR SHAPED ROLLERS

Accessories: see page ML-10

Modline

Registered model





| Performances      | <b>TCRQ</b> 180 | TCG 180 |                     |
|-------------------|-----------------|---------|---------------------|
| Max. stroke       | 7,480           | 7,540   | [mm]                |
| Max. speed        | 5               | 5       | [m/s]               |
| Max. acceleration | 20              | 20      | [m/s <sup>2</sup> ] |
| Repeatability     | ± 0.1           | ± 0.1   | [mm]                |
| Loadless torque   | 4.2             | 1.2     | [Nm]                |

| Suggested working load conditions |                     |                     |                     |                    |                    |                    |
|-----------------------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|
| Module                            | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |
| TCRQ 180                          | 630                 | 800                 | 800                 | 3,300              | 7,320              | 7,320              |
| TCG 180                           | 220                 | 270                 | 540                 | 3,300              | 3,400              | 1,800              |

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

#### Assembly positions and load direction, see page ML-10

| Data                  | <b>TCRQ 180</b> | TCG 180           |
|-----------------------|-----------------|-------------------|
| Belt                  | 40A             | ATL10             |
| Slide                 | 4 roller slide  | es with 2 rollers |
|                       | 4 rollers Ø 5   | 52, guide Ø16     |
| Load bearing profile  | E01-5           | (see page ML-12)  |
| Pulley Ø              | 92.31           | [mm]              |
| Linear displacement p | er rev. 290     | [mm]              |

To calculate the module weight use the following formula: M=M<sub>base</sub>+q•stroke<sub>max</sub>/1,000 Stroke<sub>max</sub> [mm]





Fx= Max belt strength

| Weights                | TCRQ 18               | 0 TCG 1             | 80     |
|------------------------|-----------------------|---------------------|--------|
| Inertia of the pulley  | 0.00                  | [kgm <sup>2</sup> ] |        |
| Belt weight            | 0.55                  |                     | [kg/m] |
| Carriage weight        | 12.4                  | 10.6                | [kg]   |
| Base module (stroke=0) | M <sub>base</sub> =32 | 27.6                | [kg]   |
| 1,000 mm profile       | q=21                  | q=16.8              | [kg]   |

## TCH 180 e TCS 180

**Registered Model** 

Accessories: see page ML-10

Ø(See page ML-60 to ML-61)



| Performances      | TCH 180 | TCS 180 |                     |
|-------------------|---------|---------|---------------------|
| Max. stroke       | 7,340   | 7,340   | [mm]                |
| Max. speed        | 5       | 5       | [m/s]               |
| Max. acceleration | 50      | 50      | [m/s <sup>2</sup> ] |
| Repeatability     | ± 0.1   | ± 0.1   | [mm]                |
| Loadless torque   | 3.2     | 3.2     | [Nm]                |

| Suggested working load conditions |                     |                     |                     |                    |                    |                    |
|-----------------------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|
| Module                            | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |
| TCH 180                           | 600                 | 850                 | 850                 | 3,300              | 9,200              | 9,200              |
| TCS 180                           | 960                 | 1,350               | 1,350               | 3,300              | 10,950             | 10,950             |

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

| Data                         | TCH 180 - TCS 180           |
|------------------------------|-----------------------------|
| Belt                         | 40ATL10                     |
| Slide                        | 4 caged ball slides size 20 |
| Load bearing profile         | E01-5 (see page ML-12)      |
| Pulley Ø                     | 92.31 [mm]                  |
| Linear displacement per rev. | . 290 [mm]                  |



Fx= Max belt strength

| Weights                | TCH 180 - TCS 180       |                     |
|------------------------|-------------------------|---------------------|
| Inertia of the pulley  | 0.0037                  | [kgm <sup>2</sup> ] |
| Belt weight            | 0.55                    | [kg/m]              |
| Carriage weight        | 6                       | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =23.6 | [kg]                |
| 1,000 mm profile       | q=19                    | [kg]                |

# **TCRQ 170**

Modline

Registered model

### Accessories: see page ML-10



| Performances      | TCRQ 17 | 70                  |
|-------------------|---------|---------------------|
| Max. stroke       | 5,480   | [mm]                |
| Max. speed        | 7       | [m/s]               |
| Max. acceleration | 20      | [m/s <sup>2</sup> ] |
| Repeatability     | ± 0.1   | [mm]                |
| Loadless torque   | 4.2     | [Nm]                |

| Suggest | ed working          | g load con          | ditions             |                    |                    |                    |
|---------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|
| Module  | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |
| TCRQ 17 | 0 590               | 1,202               | 1,202               | 4,000              | 7,070              | 7,070              |

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

### Assembly positions and load direction, see page ML-10

| Data                         |                   |           |
|------------------------------|-------------------|-----------|
| Belt                         | 50ATL10           |           |
| Slides                       | 4 slides 2 roller | s Ø40[mm] |
| Load bearing profile         | Statyca (see pag  | je ML-13) |
| Pulley Ø                     | 95.49             | [mm]      |
| Linear displacement per rev. | 300               | [mm]      |



Fx= Max belt strength

| Weights                |                         |                     |
|------------------------|-------------------------|---------------------|
| Inertia of the pulley  | 0.0053                  | [kgm <sup>2</sup> ] |
| Belt weight            | 0.68                    | [kg/m]              |
| Carriage weight        | 14.6                    | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =44.6 | [kg]                |
| 1,000 mm profile       | q=25                    | [kg]                |

# TCH 170 e TCS 170

**Registered Model** 

Accessories: see page ML-10



| Performances      | <b>TCH 170</b> | TCS 170 |                     |
|-------------------|----------------|---------|---------------------|
| Max. stroke       | 5,480          | 5,480   | [mm]                |
| Max. speed        | 5              | 5       | [m/s]               |
| Max. acceleration | 50             | 50      | [m/s <sup>2</sup> ] |
| Repeatability     | ± 0.1          | ± 0.1   | [mm]                |
| Loadless torque   | 4.8            | 4.8     | [Nm]                |

| Suggeste | d workin            | g load con          | ditions             |                    |                    |                    |
|----------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|
| Module   | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |
| TCH 170  | 450                 | 1,430               | 1,430               | 4,000              | 9,400              | 9,400              |
| TCS 170  | 720                 | 2,050               | 2,050               | 4,000              | 11,950             | 11,950             |

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

| Data                         | TCH 170 - TCS 170           |      |  |  |
|------------------------------|-----------------------------|------|--|--|
| Belt                         | 50ATL10                     |      |  |  |
| Slide                        | 4 caged ball slides size 20 |      |  |  |
| Load bearing profile         | Statyca (see page ML-13)    |      |  |  |
| Pulley Ø                     | 95.49                       | [mm] |  |  |
| Linear displacement per rev. | 300                         | [mm] |  |  |

HZ MZ FX MY FX

Fx= Max belt strength

| Weights                | TCH 170 - TCS 170     |                     |  |
|------------------------|-----------------------|---------------------|--|
| Inertia of the pulley  | 0.0053                | [kgm <sup>2</sup> ] |  |
| Belt weight            | 0.68                  | [kg/m]              |  |
| Carriage weight        | 8.6                   | [kg]                |  |
| Base module (stroke=0) | M <sub>base</sub> =38 | [kg]                |  |
| 1,000 mm profile       | q=23                  | [kg]                |  |

# **TCRQ 200**

Modline

Registered model

### Accessories: see page ML-10



\*: Please specify the roller orientation according to the barycentre of the applied load. Values corresponding to the most favourable load position.

| Performances  |                     |                     |                     | TCRQ 20            | 00                 |                     |
|---------------|---------------------|---------------------|---------------------|--------------------|--------------------|---------------------|
| Max. stroke   |                     |                     |                     |                    | 8,480              | [mm]                |
| Max. speed    |                     |                     |                     |                    | 5                  | [m/s]               |
| Max. acceler  | ration              |                     |                     |                    | 20                 | [m/s <sup>2</sup> ] |
| Repeatability | /                   |                     |                     |                    | ± 0.1              | [mm]                |
| Loadless tor  | que                 |                     |                     |                    | 4.2                | [Nm]                |
| Suggested     | working             | g load con          | ditions             |                    |                    |                     |
| Module M      | l <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N]  |
| TCRQ 200 1    | ,300(*)             | 1,600(*)            | 1,300               | 4,000              | 7,620              | 12,500 (*)          |

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

### Assembly positions and load direction, see page ML-10

| Data                         |            |                  |
|------------------------------|------------|------------------|
| Belt                         | 50ATL10    | )                |
| Slide                        | 4 slides 3 | 3 roll. Ø40 [mm] |
| Load bearing profile         | Valyda     | (see page 13)    |
| Pulley Ø                     | 95.49      | [mm]             |
| Linear displacement per rev. | 300        | [mm]             |



Fx= Max belt strength

| Weights                |                       |                     |
|------------------------|-----------------------|---------------------|
| Inertia of the pulley  | 0.0053                | [kgm <sup>2</sup> ] |
| Belt weight            | 0.68                  | [kg/m]              |
| Carriage weight        | 15                    | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =52 | [kg]                |
| 1,000 mm profile       | q=30                  | [kg]                |

# TCH 200 e TCS 200

Registered model

Accessories: see page ML-10



| Performa                          | ances               |                     | тсн                 | 200                | TCS 200            |                     |
|-----------------------------------|---------------------|---------------------|---------------------|--------------------|--------------------|---------------------|
| Max. strok                        | ke                  |                     | 8,480               | C                  | 8,480              | [mm]                |
| Max. spee                         | ed                  |                     | 5                   |                    | 5                  | [m/s]               |
| Max. acce                         | eleration           |                     | 50                  |                    | 50                 | [m/s <sup>2</sup> ] |
| Repeatab                          | ility               |                     | ± 0.1               |                    | ± 0.1              | [mm]                |
| Loadless                          | torque              |                     | 4.8                 |                    | 4.8                | [Nm]                |
| Suggested working load conditions |                     |                     |                     |                    |                    |                     |
| Module                            | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N]  |
|                                   | E00                 | 1 120               | 1 120               | 4 000              | 0 400              | 0.400               |

| Module  | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |
|---------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|
| TCH 200 | 500                 | 1,430               | 1,430               | 4,000              | 9,400              | 9,400              |
| TCS 200 | 810                 | 2,050               | 2,050               | 4,000              | 13,950             | 13,950             |

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

| Data                        | TCH 200 -        | TCS 200      |
|-----------------------------|------------------|--------------|
| Belt                        | 50ATL10          |              |
| Slide                       | 4 caged ball sl  | ides size 20 |
| Load bearing profile        | Valyda (see      | page ML-13)  |
| Pulley Ø                    | 95.49            | [mm]         |
| Linear displacement per rev | <sup>.</sup> 300 | [mm]         |

| Fz       |           |
|----------|-----------|
| Mz       |           |
|          | E Company |
|          | Fy        |
|          | My        |
| Mx       |           |
| Mx<br>Fx |           |

Fx= Max belt strength

| Weights                | TCH 200 - 1           | r <b>cs</b> 200     |
|------------------------|-----------------------|---------------------|
| Inertia of the pulley  | 0.0053                | [kgm <sup>2</sup> ] |
| Belt weight            | 0.68                  | [kg/m]              |
| Carriage weight        | 8,8                   | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =42 | [kg]                |
| 1,000 mm profile       | q=27.5                | [kg]                |

# **TCRQ 220**

Modline

Registered model

### Accessories: see page ML-10



\* : Please specify the roller orientation according to the barycentre of the applied load. Values corresponding to the most favourable load position.

| Performa   | inces               |                     |                     |                    | TCRQ 22            | 20                  |
|------------|---------------------|---------------------|---------------------|--------------------|--------------------|---------------------|
| Max. strok | е                   |                     |                     |                    | 11,480             | [mm]                |
| Max. spee  | d                   |                     |                     |                    | 5                  | [m/s]               |
| Max. acce  | leration            |                     |                     |                    | 20                 | [m/s <sup>2</sup> ] |
| Repeatabi  | lity                |                     |                     |                    | ± 0.1              | [mm]                |
| Loadless t | orque               |                     |                     |                    | 5.8                | [Nm]                |
| Suggeste   | d working           | g load con          | ditions             |                    |                    |                     |
| Module     | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N]  |
| TCRQ220    | 1,400(*)            | 1,600(*)            | 1,300               | 6,000              | 7,620              | 12,500(*)           |

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

Assembly positions and load direction, see page ML-10

| Data                         |                            |
|------------------------------|----------------------------|
| Belt                         | 75ATL10                    |
| Slide                        | 4 slides 3 roll. Ø 40 [mm] |
| Load bearing profile         | Logyca (see page ML-13)    |
| Pulley Ø                     | 95.49 [mm]                 |
| Linear displacement per rev. | 300 [mm]                   |



Fx= Max belt strength

| Weights                |                         |                     |
|------------------------|-------------------------|---------------------|
| Inertia of the pulley  | 0,0082                  | [kgm <sup>2</sup> ] |
| Belt weight            | 1,02                    | [kg/m]              |
| Carriage weight        | 16                      | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =54.6 | [kg]                |
| 1,000 mm profile       | q= 33.7                 | [kg]                |

# TCH 220 - TCS 220

Registered model

Accessories: see page ML-10



| Performances      | TCH 220 | TCS 220 |                     |
|-------------------|---------|---------|---------------------|
| Max. stroke       | 11,480  | 11,480  | [mm]                |
| Max. speed        | 5       | 5       | [m/s]               |
| Max. acceleration | 50      | 50      | [m/s <sup>2</sup> ] |
| Repeatability     | ± 0.1   | ± 0.1   | [mm]                |
| Loadless torque   | 6.9     | 6.9     | [Nm]                |

| Suggeste | d workin            | g load con          | ditions             |                    |                    |                    |
|----------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|
| Module   | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |
| TCH 220  | 950                 | 2,200               | 2,200               | 6,000              | 13,000             | 13,000             |
| TCS 220  | 1,300               | 3,200               | 3,200               | 6,000              | 18,300             | 18,300             |

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

| Data                         | TCH 220 - TCS 220           |
|------------------------------|-----------------------------|
| Belt                         | 75ATL10                     |
| Slide                        | 4 caged ball slides size 25 |
| Load bearing profile         | Logyca (see page ML-13)     |
| Pulley Ø                     | 95.49 [mm]                  |
| Linear displacement per rev. | 300 [mm]                    |



Fx= Max belt strength

| Weights                | TCH 220 - T             | CS 220              |
|------------------------|-------------------------|---------------------|
| Inertia of the pulley  | 0.0082                  | [kgm <sup>2</sup> ] |
| Belt weight            | 1.02                    | [kg/m]              |
| Carriage weight        | 9.5                     | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =47.4 | [kg]                |
| 1,000 mm profile       | q=33                    | [kg]                |

# TCRQ 280 (TCRP 280)

V-SHAPED GUIDE RAILS WITH ROLLER SLIDES

Registered model\*

RP= Heavy guide rails and roller slides - Ø52 Accessories: see page ML-10



| Dete       |                   | TOP   |            | 00    |                  |
|------------|-------------------|-------|------------|-------|------------------|
| Data       |                   | ICR   | <b>Q</b> 2 | 80    | (TCRP 280)       |
| Belt       |                   | 75 A  | ATL 1      | 10    |                  |
| Slide      | 4 slides 3 roller | s Ø40 | 4 slic     | les 4 | rollers Ø52 [mm] |
| Load bea   | ring profile      | Prat  | yca        | (ទ    | see page ML-14)  |
| Pulley Ø   |                   | 95.4  | 9          |       | [mm]             |
| Linear dis | placement per     | rev.  |            | 300   | )                |

### [mm]

To calculate the module weight use the following formula: **M=M**<sub>base</sub>+q•stroke<sub>max</sub>/1,000 Stroke<sub>max</sub> [mm]

Weights

Belt weight

Inertia of the pulley

Carriage weight

1,000 mm profile

Base module

Μ

L

Modline

(TCRP 280)

M<sub>base</sub>=122 [kg]

[kgm<sup>2</sup>]

[kg/m]

[kg]

[kg]

**TCRQ 280** 

27

M<sub>base</sub>=87 q=48

0.0082

55

q=56

1.02

# TCH 280 - TCS 280

Registered model

Accessories: see page ML-10



[mm]

[mm]

Carriage weight

1,000 mm profile

Base module (stroke=0)

18

M<sub>base</sub>=69

q= 47

[kg]

[kg]

[kg]

Pratyca (see page ML-14)

95.49

Pulley Ø

Load bearing profile

Linear displacement per rev. 300



| Assembly positions and load directi | on, see page ML-10 |
|-------------------------------------|--------------------|
| Accelling peeticene and read an eed | on, occ page me ro |

| Data                         |            |             |        |
|------------------------------|------------|-------------|--------|
| Belt                         | 100 ATL    | . 10        |        |
| Slide                        | 4 slides 4 | rollers Ø52 | [mm]   |
| Load bearing profile         | Solyda     | (see page   | ML-14) |
| Pulley Ø                     | 95.49      |             | [mm]   |
| Linear displacement per rev. | 300        |             | [mm]   |

| Weights                |                        |                     |
|------------------------|------------------------|---------------------|
| Inertia of the pulley  | 0.0082                 | [kgm <sup>2</sup> ] |
| Belt weight            | 1.02                   | [kg/m]              |
| Carriage weight        | 55                     | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =137 | [kg]                |
| 1,000 mm profile       | q=75                   | [kg]                |

To calculate the module weight use the following formula:  $M=M_{base}+q$ •stroke<sub>max</sub>/1,000 Stroke<sub>max</sub> [mm]

ML-41

# TCH 360 - TCS 360

Registered model

Accessories: see page ML-10





\* Versions with a 150 mm belt are also available. (TCSE360)

| Performances      | <b>TCH 360</b> | TCS 360 |                     |
|-------------------|----------------|---------|---------------------|
| Max. stroke       | 11,480         | 11,485  | [mm]                |
| Max. speed        | 5              | 5       | [m/s]               |
| Max. acceleration | 50             | 50      | [m/s <sup>2</sup> ] |
| Repeatability     | ± 0.1          | ± 0.1   | [mm]                |
| Loadless torque   | 8.3            | 8.3     | [Nm]                |

| Suggest | ted worki           | ng load co          | nditions            |                    |                    |                    |
|---------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|
| Module  | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |
| TCH 360 | 2,600               | 3,710               | 3,710               | 8,000              | 19,050             | 19,050             |
| TCS 360 | 4,000               | 5,500               | 5,500               | 8,000              | 28,600             | 28,600             |

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

| Data                         | TCH 360 - TCS 360             |
|------------------------------|-------------------------------|
| Belt                         | 100 ATL 10                    |
| Slide                        | 4 caged ball roller slides 30 |
| Load bearing profile         | Solyda (see page ML-14)       |
| Pulley Ø                     | 95.49 [mm]                    |
| Linear displacement per rev. | 300 [mm]                      |

| Weights                | TCH 360 - T            | CS 360              |
|------------------------|------------------------|---------------------|
| Inertia of the pulley  | 0.0082                 | [kgm <sup>2</sup> ] |
| Belt weight            | 1.02                   | [kg/m]              |
| Carriage weight        | 28                     | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =105 | [kg]                |
| 1,000 mm profile       | q= 70                  | [kg]                |

To calculate the module weight use the following formula: M=M<sub>base</sub>+q•stroke<sub>max</sub>/1,000 Stroke<sub>max</sub> [mm]



Fx= Max belt strength

# TECRQ - TECH 170 (EASY)

TRAPEZOIDAL GUIDES AND ROLLER SLIDES OR RECIRCULATING BALL SLIDES

Modline



| Performances           | <b>TECR 170</b> | <b>TECH 170</b> |                     |
|------------------------|-----------------|-----------------|---------------------|
| Max stroke             | 5.560           | 5.560           | [mm]                |
| Max speed              | 5               | 4               | [m/s]               |
| Max acceleration       | 15              | 20              | [m/s <sup>2</sup> ] |
| Repositioning accuracy | ± 0.1           | ± 0.1           | [mm]                |
| Loadless torque        | 4.2             | 4.8             | [Nm]                |

| Suggest         | ed workir           | ng load cor         | nditions            |                    |                    |                    |
|-----------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|
| Module          | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |
| TECR 170        | ) 590               | 848                 | 848                 | 4.000              | 7.070              | 7.070              |
| <b>TECH 170</b> | ) 580               | 900                 | 1.050               | 4.000              | 7.620              | 7.620              |

The dynamic values indicated do not correspond to maximum theoretical load capacities. They already take safety factors into account which are suitable for machinery in the automation sector. In the event of combined stress consult the technical support service.

| Constructive data                  | <b>TECR 1</b> | 70 - TECH   | 170    |
|------------------------------------|---------------|-------------|--------|
| Belt                               | 50 ATL 1      | 10          |        |
| Sliding (TECR170)                  | 4 roller s    | lides       | [mm]   |
| Sliding (TECH 170)                 | 4 ball slie   | des size 20 | [mm]   |
| Profile                            | Statyca       | (see page   | ML-13) |
| Pulley Ø                           | 95,49         |             | [mm]   |
| Linear displacement per revolution | 300           |             | [mm]   |

| Mx<br>Fx | Fz<br>Mz | Fy<br>My |
|----------|----------|----------|

<u>ก</u>+

 $\int \circ \int$ 

Roller slides

Fx= Max belt strenght

| Weight                | TECH 170 - T           | ECR 170             |
|-----------------------|------------------------|---------------------|
| Inertia of the pulley | 0,0053                 | [kgm <sup>2</sup> ] |
| Belt weight           | 0,68                   | [kg/m]              |
| Carriage weight       | 8,6                    | [kg]                |
| Base module (corsa=0) | M <sub>base</sub> = 38 | [kg]                |
| 1.000 mm profile      | q=23                   | [kg]                |

Щ

# TECRR 180 - TECH 180 (EASY)

### TRAPEZOIDAL GUIDES AND ROLLER SLIDES OR RECIRCULATING BALL SLIDES

Patent pending



#### Recirculating ball slides



Roller slides

| 350 |  |
|-----|--|
| -   |  |
|     |  |



Fx= Max belt strenght

| Weight                 |                       |                     |
|------------------------|-----------------------|---------------------|
| Inertia of the pulley  | 0,0037                | [kgm <sup>2</sup> ] |
| Belt weight            | 0,55                  | [kg/m]              |
| Carriage weight        | 13                    | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =33 | [kg]                |
| 1.000 mm profile       | q=16                  | [kg]                |

4 slides 4 rollers Ø30 [mm]

[mm]

[mm]

| Performances           | TECRR 1 | TECRR 180           |  |
|------------------------|---------|---------------------|--|
| Max stroke             | 7.480   | [mm]                |  |
| Max speed              | 5       | [m/s]               |  |
| Max acceleration       | 20      | [m/s <sup>2</sup> ] |  |
| Repositioning accuracy | ± 0,1*  | [mm]                |  |
| Loadless torque        | 4,2     | [Nm]                |  |

| Suggest | ted workin          | ig load cor         | nditions            |                    |                    |                    |
|---------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|
| Module  | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |
| TECRR18 | 30 490              | 1.170               | 1.170               | 2.700              | 5.900              | 5.900              |

The dynamic values indicated do not correspond to maximum theoretical load capacities. They already take safety factors into account which are suitable for machinery in the automation sector. In the event of combined stress consult the technical support service.

40ATL10

180x90

92,31

290

Belt

Sliding Profile

Pulley Ø

**Constructive data** 

Linear displacement per revolution

um theoretical load Mx hich are suitable for Fx A **ZCG 60** 

### Accessories: see page ML-10







60x90 profile available

IMPORTANT: when pairing ZC... modules with TC... modules, please check the required Z axis stroke, as this could be limited by the size of the module plates sizes.

| Performances    | <b>ZCG 6</b> 0 |                     |
|-----------------|----------------|---------------------|
| Max. stroke     | 5,470          | [mm]                |
| Max. speed      | 4              | [m/s]               |
| Max. acceration | 20             | [m/s <sup>2</sup> ] |
| Repeatability   | ± 0.1          | [mm]                |
|                 |                |                     |

| Suggest | ed working          | g load con          | ditions             |                    |                    |                    |
|---------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|
| Module  | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |
| ZCG 60  | 60                  | 200                 | 340                 | 2,000              | 2,100              | 1,500              |



Fx= Max belt strength

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

### Assembly positions and load direction, see page ML-10

| Data                         |                                  |
|------------------------------|----------------------------------|
| Belt                         | 32AT10                           |
| Slide                        | 4 shaped roller slides Ø 42 [mm] |
| Load bearing profile         | F01-1 (see page ML-11)           |
| Pulley Ø                     | 70.03 [mm]                       |
| Linear displacement per rev. | 220 [mm]                         |

| Weights                |                       |                     |
|------------------------|-----------------------|---------------------|
| Inertia of the pulley  | 0.0013                | [kgm <sup>2</sup> ] |
| Belt weight            | 0.19                  | [kg/m]              |
| Carriage weight        | 10                    | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =14 | [kg]                |
| 1,000 mm profile       | q=6                   | [kg]                |

Accessories: see page ML-10



IMPORTANT: when pairing ZC... modules with TC... modules, please check the required Z axis stroke, as this could be limited by the size of the module plates sizes.

| Performances      | <b>ZCL 60</b> |                     |
|-------------------|---------------|---------------------|
| Max. stroke       | 5,470         | [mm]                |
| Max. speed        | 4             | [m/s]               |
| Max. acceleration | 40            | [m/s <sup>2</sup> ] |
| Repeatability     | ± 0.1         | [mm]                |



Fx= Max belt strength

| Suggested working load conditions |                     |                     |                     |                    |                    |                    |
|-----------------------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|
| Module                            | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |
| ZCL 60                            | 151                 | 570                 | 630                 | 2,000              | 4,180              | 3,740              |

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

| Data                         |                               |
|------------------------------|-------------------------------|
| Belt                         | 32AT10                        |
| Slide                        | 4 caged ball roller slides 15 |
| Load bearing profile         | F01-1 (see page ML-11)        |
| Pulley Ø                     | 70.03 [mm]                    |
| Linear displacement per rev. | 220 [mm]                      |

| Weights                |                       |                     |
|------------------------|-----------------------|---------------------|
| Inertia of the pulley  | 0.0013                | [kgm <sup>2</sup> ] |
| Belt weight            | 0.19                  | [kg/m]              |
| Carriage weight        | 11                    | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =16 | [kg]                |
| 1,000 mm profile       | q=7.2                 | [kg]                |

M L

## **ZCG 90**

### Accessories: see page ML-10







Total length = 550 + Max. Stroke



90x180 profile available

IMPORTANT: when pairing ZC... modules with TC... modules, please check the required Z axis stroke, as this could be limited by the size of the module plates sizes.

| Performances                      |                     |                     | Z                   | ZCG 90             |                     |                    |
|-----------------------------------|---------------------|---------------------|---------------------|--------------------|---------------------|--------------------|
| Max. stroke                       |                     |                     | 5                   | 5,450              | [mm]                |                    |
| Max. speed                        |                     |                     | 4                   | ļ                  | [m/s]               |                    |
| Max. acceleration                 |                     |                     | 1                   | 5                  | [m/s <sup>2</sup> ] |                    |
| Repeatability                     |                     |                     | ±                   | - 0.1              | [mm]                |                    |
| Suggested working load conditions |                     |                     |                     |                    |                     |                    |
| Module                            | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N]  | F <sub>z</sub> [N] |
| ZCG 90                            | 120                 | 400                 | 540                 | 2,000              | 3,400               | 1,800              |



Fx= Max belt strength

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

### Assembly positions and load direction, see page ML-10

| Data                         |                            |
|------------------------------|----------------------------|
| Belt                         | 32AT10                     |
| Slide                        | 4 shap. r. Ø52 - guide Ø16 |
| Load bearing profile         | E01-4 (see page ML-11)     |
| Pulley Ø                     | 70.03 [mm]                 |
| Linear displacement per rev. | 220 [mm]                   |

| Weights                |                       |                     |
|------------------------|-----------------------|---------------------|
| Inertia of the pulley  | 0.0013                | [kgm <sup>2</sup> ] |
| Belt weight            | 0.19                  | [kg/m]              |
| Carriage weight        | 10.5                  | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =16 | [kg]                |
| 1.000 mm profile       | q=8.5                 | [kg]                |

### Accessories: see page ML-10



IMPORTANT: when pairing ZC... modules with TC... modules, please check the required Z axis stroke, as this could be limited by the size of the module plates sizes.

| Performances                      |                     |                     | Z                   | ZCRR 90            |                     |                    |
|-----------------------------------|---------------------|---------------------|---------------------|--------------------|---------------------|--------------------|
| Max. stroke                       |                     |                     | 5,450 [I            |                    | [mm]                |                    |
| Max. speed                        |                     |                     | 2                   | 1                  | [m/s]               |                    |
| Max. acceleration                 |                     |                     | 2                   | 25                 | [m/s <sup>2</sup> ] |                    |
| Repeatability                     |                     |                     | Ę                   | ± 0.1              | [mm]                |                    |
| Suggested working load conditions |                     |                     |                     |                    |                     |                    |
| Module                            | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N]  | F <sub>z</sub> [N] |
| ZCRR 90                           | 300                 | 1,000               | 1,000               | 2,000              | 6,700               | 6,700              |



Fx= Max belt strength

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

#### Assembly positions and load direction, see page ML-10

| Data                         |                           |
|------------------------------|---------------------------|
| Belt                         | 32 AT 10                  |
| Slide                        | 4 slides 4 roll. Ø30 [mm] |
| Load bearing profile         | E01-4 (see page ML-11)    |
| Pulley Ø                     | 70.03 [mm]                |
| Linear displacement per rev. | 220 [mm]                  |

| Weights                |                        |                     |
|------------------------|------------------------|---------------------|
| Inertia of the pulley  | 0.0013                 | [kgm <sup>2</sup> ] |
| Belt weight            | 0.21                   | [kg/m]              |
| Carriage weight        | 13                     | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> = 20 | [kg]                |
| 1,000 mm profile       | q=11.2                 | [kg]                |

55

Module

ZCL 90

### Accessories: see page ML-10







90x180 profile available

IMPORTANT: when pairing ZC... modules with TC... modules, please check the required Z axis stroke, as this could be limited by the size of the module plates sizes.

| Performances      | <b>ZCL 90</b> |                     |
|-------------------|---------------|---------------------|
| Max. stroke       | 5,450         | [mm]                |
| Max. speed        | 4             | [m/s]               |
| Max. acceleration | 20            | [m/s <sup>2</sup> ] |
| Repeatability     | ± 0.1         | [mm]                |

| 1        |   |           |   |
|----------|---|-----------|---|
| Mz<br>Fz | Ł | My<br>C F | y |

Mx Fx

Fx= Max belt strength

| The dynamic values shown do not refer to the max. theoretical load capacity. |
|------------------------------------------------------------------------------|
| They include a safety coefficient for automated machinery.                   |
| In case of peak forces acting together please ask the technical dept         |

M<sub>z</sub>[Nm]

1,000

| Data                         |                               |
|------------------------------|-------------------------------|
| Belt                         | 32AT10                        |
| Slide                        | 4 caged ball roller slides 20 |
| Load bearing profile         | E01-4 (see page ML-11)        |
| Pulley Ø                     | 70.03 [mm]                    |
| Linear displacement per rev. | 220 [mm]                      |

**Suggested working load conditions** 

M<sub>v</sub>[Nm]

730

M<sub>x</sub>[Nm]

260

| Weights                |                         |                     |
|------------------------|-------------------------|---------------------|
| Inertia of the pulley  | 0.0013                  | [kgm <sup>2</sup> ] |
| Belt weight            | 0.19                    | [kg/m]              |
| Carriage weight        | 11.5                    | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =18.5 | [kg]                |
| 1,000 mm profile       | q=11.5                  | [kg]                |

To calculate the module weight use the following formula: **M=M**<sub>base</sub>+q•stroke<sub>max</sub>/1,000 Stroke<sub>max</sub> [mm]

F<sub>x</sub>[N]

2,000

F<sub>v</sub>[N]

5,500

F<sub>z</sub>[N]

5,000



### Accessories: see page ML-10

222

٦

**ZCY 180** 

Registered model

| Performances      | ZCY 180 |                     |
|-------------------|---------|---------------------|
| Max. stroke       | 6,750   | [mm]                |
| Max. speed        | 4       | [m/s]               |
| Max. acceleration | 15      | [m/s <sup>2</sup> ] |
| Repeatability     | ± 0.6   | [mm]                |

| Suggested working load conditions |                     |                     |                     |                    |                    |                    |
|-----------------------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|
| Module                            | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |
| ZCY 180                           | 220                 | 350                 | 280                 | 3,000              | 2,400              | 1,800              |

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

### Assembly positions and load direction, see page ML-10

| Data                         |                  |           |
|------------------------------|------------------|-----------|
| Belt                         | 50ATL10          |           |
| Slide                        | 4 Rollers Ø 76   | [mm]      |
| Load bearing profile         | Sys -1G (see pag | ge ML-14) |
| Pulley Ø                     | 95.49            | [mm]      |
| Linear displacement per rev. | 300              | [mm]      |

| Weights                |                         |                     |
|------------------------|-------------------------|---------------------|
| Inertia of the pulley  | 0.0067                  | [kgm <sup>2</sup> ] |
| Belt weight            | 0.34                    | [kg/m]              |
| Carriage weight        | 23.2                    | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =33.5 | [kg]                |
| 1,000 mm profile       | q=11.61                 | [kg]                |

To calculate the module weight use the following formula: M=M<sub>base</sub>+q·stroke<sub>max</sub>/1,000 Stroke<sub>max</sub> [mm]

| IMPORTANT: when pairing ZC modules with TC modules, please check the                     |
|------------------------------------------------------------------------------------------|
| required Z axis stroke, as this could be limited by the size of the module plates sizes. |
|                                                                                          |
|                                                                                          |
|                                                                                          |

|                |                |                     |    | SCREV | VS FOR |
|----------------|----------------|---------------------|----|-------|--------|
| _              | Total length : | = 710 + Max. Stroke |    | _     |        |
| 55 Max. Stroke | 206            | 354                 | 20 | 75    |        |
|                | ÷              |                     |    |       |        |

Ø(See page ML-60 to ML-61)

177





Fx= Max belt strength

### OMEGA BELT DRIVE V-SHAPED GUIDE RAILS AND ROLLER SLIDES

### Modline

### SUITABLE FOR VERTICAL AND HORIZONTAL ASSEMBLY Accessories: see page ML-10









SCREWS FOR BELT TENSION

IMPORTANT: when pairing ZC... modules with TC... modules, please check the required Z axis stroke, as this could be limited by the size of the module plates sizes.

| Performances                                   |                     | <b>ZCRQ 100</b>    |                    |                     |  |  |
|------------------------------------------------|---------------------|--------------------|--------------------|---------------------|--|--|
| Max. stroke                                    |                     | 5,300 [m           |                    |                     |  |  |
| Max. speed                                     |                     | 4 [m               |                    |                     |  |  |
| Max. acceleration 25                           |                     |                    |                    | [m/s <sup>2</sup> ] |  |  |
| Repeatability                                  | ±                   | - 0.1              | [mm]               |                     |  |  |
| Suggested working load conditions              |                     |                    |                    |                     |  |  |
| Module M <sub>x</sub> [Nm] M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>v</sub> [N] | $F_{z}[N]$          |  |  |

My ۴v

Fx= Max belt strength

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

1,200

#### Assembly positions and load direction, see page ML-10

1,200

ZCRQ 100

360

| Data                         |                            |
|------------------------------|----------------------------|
| Belt                         | 50 ATL 10                  |
| Slide                        | 4 slides 2 roll. Ø 40 [mm] |
| Load bearing profile         | MA 1-5 (see page ML-12)    |
| Pulley Ø                     | 95.49 [mm]                 |
| Linear displacement per rev. | 300 [mm]                   |

| Weights                |                         |                     |
|------------------------|-------------------------|---------------------|
| Inertia of the pulley  | 0.0067                  | [kgm <sup>2</sup> ] |
| Belt weight            | 0.34                    | [kg/m]              |
| Carriage weight        | 25                      | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =36.5 | [kg]                |
| 1,000 mm di profile    | q=16.5                  | [kg]                |

To calculate the module weight use the following formula: M=M<sub>base</sub>+q•stroke<sub>max</sub>/1,000 Stroke<sub>max</sub> [mm]

4,000

7,320

7,320

SUITABLE FOR VERTICAL AND HORIZONTAL ASSEMBLY Accessories: see page ML-10

285



IMPORTANT: when pairing ZC... modules with TC... modules, please check the required Z axis stroke, as this could be limited by the size of the module plates sizes.

| Performances      | ZCS 100 |                     |
|-------------------|---------|---------------------|
| Max. stroke       | 5,300   | [mm]                |
| Max. speed        | 4       | [m/s]               |
| Max. acceleration | 25      | [m/s <sup>2</sup> ] |
| Repeatability     | ± 0.1   | [mm]                |



Fx= Max belt strength

| Suggested working load conditions |                     |                     |                     |                    |                    |                    |
|-----------------------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|
| Module                            | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |
| ZCS 100                           | 480                 | 1,630               | 1,840               | 4,000              | 7,360              | 8,260              |

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery.

In case of peak forces acting together please ask the technical dept

| Data                         |                               |
|------------------------------|-------------------------------|
| Belt                         | 50 ATL 10                     |
| Slide                        | 4 caged ball roller slides 20 |
| Load bearing profile         | MA 1-5 (see page ML-12)       |
| Pulley Ø                     | 95.49 [mm]                    |
| Linear displacement per rev. | 300 [mm]                      |

| Weights                |                         |                     |
|------------------------|-------------------------|---------------------|
| Inertia of the pulley  | 0.0067                  | [kgm <sup>2</sup> ] |
| Belt weight            | 0.34                    | [kg/m]              |
| Carriage weight        | 24.4                    | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =36.6 | [kg]                |
| 1,000 mm profile       | q=15.2                  | [kg]                |

### OMEGA BELT DRIVE V-SHAPED GUIDE RAILS AND ROLLER SLIDES

SUITABLE FOR VERTICAL AND HORIZONTAL ASSEMBLY





Modline





IMPORTANT: when pairing ZC... modules with TC... modules, please check the required Z axis stroke, as this could be limited by the size of the module plates sizes.

| Performances      | ZCRQ 170 - ZCE | RQ 170              |
|-------------------|----------------|---------------------|
| Max. stroke       | 5,300          | [mm]                |
| Max. speed        | 4              | [m/s]               |
| Max. acceleration | 25             | [m/s <sup>2</sup> ] |
| Repeatability     | ± 0.1          | [mm]                |

| Suggested working load conditions |                          |                     |                    |                    |                    |  |  |  |
|-----------------------------------|--------------------------|---------------------|--------------------|--------------------|--------------------|--|--|--|
| Module M <sub>x</sub>             | [Nm] M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |  |  |  |
| ZCRQ 170 44                       | 40 1,485                 | 1,485               | 4,000              | 7,620              | 7,620              |  |  |  |
| ZCERQ 170 44                      | 1,485                    | 1,485               | 6,000              | 7,620              | 7,620              |  |  |  |

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

#### Assembly positions and load direction, see page ML-10

| Data                        | ZCRQ 17    | 70 ZCER    | Q 170  |
|-----------------------------|------------|------------|--------|
| Belt                        | 50 ATL 10  | ) 75 AT    | L 10   |
| Slide                       | 4 slides 2 | roll. Ø 40 | [mm]   |
| Load bearing profile        | Statyca    | (see page  | ML-13) |
| Pulley Ø                    | 95.49      |            | [mm]   |
| Linear displacement per rev | v. 300     |            | [mm]   |



Fx= Max belt strength

| Belt | А   | В  | С  | D   | E   | F   |
|------|-----|----|----|-----|-----|-----|
| 50   | 140 | 70 | 70 | 118 | 345 | 205 |
| 75   | 164 | 82 | 82 | 143 | 379 | 215 |

| Weights                | <b>ZCRQ 170</b>       | ZCERQ 1                 | 70     |
|------------------------|-----------------------|-------------------------|--------|
| Inertia of the pulley  | 0.0067                | 0.010 [                 | kgm²]  |
| Belt weight            | 0.34                  | 0.51                    | [kg/m] |
| Carriage weight        | 27.6                  | 32                      | [kg]   |
| Base module (stroke=0) | M <sub>base</sub> =47 | M <sub>base</sub> =51.4 | [kg]   |
| 1,000 mm profile       | q=25                  | q=25                    | [kg]   |

# ZCL 170 - ZCEL 170

### OMEGA BELT DRIVE GUIDE RAILS WITH CAGED BALL ROLLER SLIDES

SUITABLE FOR VERTICAL AND HORIZONTAL ASSEMBLY Accessories: see page ML-10





Total length = 710 + Max. Stroke 55 Max. Stroke 206 354 75 20 170 20 -000 000 22 ര 266 25 Pin Ø6 000 000

> [mm] [m/s] [m/s<sup>2</sup>] [mm]

Suggested working load conditions Module M<sub>x</sub>[Nm] M<sub>v</sub>[Nm] F<sub>z</sub>[N]  $M_{7}[Nm]$ F<sub>x</sub>[N]  $F_{v}[N]$ ZCL 170 810 2,940 4,560 4,000 10,400 12,000 **ZCEL 170** 810 2,940 4,560 6,000 10,400 12,000

IMPORTANT: when pairing ZC... modules with TC... modules, please check the required Z axis stroke, as this could be limited by the size of the module plates sizes.

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

| Data                       | ZCL 170    | <b>ZCEL 170</b>     |
|----------------------------|------------|---------------------|
| Belt                       | 50 ATL 10  | 75 ATL 10           |
| Slide                      | 4 caged ba | Il roller slides 25 |
| Load bearing profile       | Statyca    | (see page ML-13)    |
| Pulley Ø                   | 95.49      | [mm]                |
| Linear displacement per re | [mm]       |                     |

My Fy

Fx= Max belt strength

| Belt | Α   | В  | С  | D   | E   | F   |
|------|-----|----|----|-----|-----|-----|
| 50   | 140 | 70 | 70 | 118 | 345 | 205 |
| 75   | 164 | 82 | 82 | 143 | 379 | 215 |

| Weights                | <b>ZCL 170</b>          | ZCEL 1               | 70                  |
|------------------------|-------------------------|----------------------|---------------------|
| Inertia of the pulley  | 0.0067                  | 0.010                | [kgm <sup>2</sup> ] |
| Belt weight            | 0.34                    | 0.51                 | [kg/m]              |
| Carriage weight        | 27.6                    | 31.6                 | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =46.2 | M <sub>base</sub> =5 | 0.2 [kg]            |
| 1,000 mm profile       | q=24                    | q=24                 | [kg]                |

To calculate the module weight use the following formula: M=M<sub>base</sub>+q•stroke<sub>max</sub>/1,000 Stroke<sub>max</sub> [mm]

ZCL 170 - ZCEL 170

5,300

4

25

± 0.1



ML-54

Performances

Max. acceleration

Max. stroke

Max. speed

Repeatability

### OMEGA BELT DRIVE V-SHAPED GUIDE RAILS AND ROLLER SLIDES

Modline

SUITABLE FOR VERTICAL AND HORIZONTAL ASSEMBLY Accessories: see page ML-10





IMPORTANT: when pairing ZC... modules with TC... modules, please check the required Z axis stroke, as this could be limited by the size of the module plates sizes.

\*: Please specify the roller orientation according to the barycentre of the applied load. Values corresponding to the most favourable load position.

| Performances      | ZCRQ 220 - ZCEF | RQ 220              |
|-------------------|-----------------|---------------------|
| Max. stroke       | 11,300          | [mm]                |
| Mas. speed        | 4               | [m/s]               |
| Max. acceleration | 25              | [m/s <sup>2</sup> ] |
| Repeatability     | ± 0.1           | [mm]                |
|                   |                 |                     |

| Suggested working load conditions |                     |                     |                     |                    |                    |                    |  |  |
|-----------------------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|--|--|
| Module                            | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |  |  |
| ZCRQ 220                          | 440                 | 1,900(*)            | 1,485               | 4,000              | 7,620              | 9,500(*)           |  |  |
| ZCERQ 220                         | ) 440               | 1,900(*)            | 1,485               | 6,000              | 7,620              | 9,500(*)           |  |  |

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

#### Assembly positions and load direction, see page ML-10

| Data                         | ZCRQ 22    | 0 ZCERQ 220       |
|------------------------------|------------|-------------------|
| Belt                         | 50 ATL 10  | 75 ATL 10         |
| Slide                        | 4 slides 3 | rollers Ø 40 [mm] |
| Load bearing profile         | Logyca     | (see page ML-13)  |
| Pulley Ø                     | 95.49      | [mm]              |
| Linear displacement per rev. | 300        | [mm]              |



Fx= Max belt strength

| Belt | A   | В  | С  | D   | E   | F   |
|------|-----|----|----|-----|-----|-----|
| 50   | 140 | 70 | 70 | 118 | 395 | 255 |
| 75   | 164 | 82 | 82 | 143 | 429 | 265 |

| Weights                | <b>ZCRQ 220</b>       | ZCERQ                 | 220                 |
|------------------------|-----------------------|-----------------------|---------------------|
| Inertia of the pulley  | 0.0067                | 0.010                 | [kgm <sup>2</sup> ] |
| Belt weight            | 0.34                  | 0.51                  | [kg/m]              |
| Carriage weight        | 26                    | 30                    | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =52 | M <sub>base</sub> =56 | [kg]                |
| 1,000 mm profile       | q=33.6                | q=34                  | [kg]                |

### SUITABLE FOR VERTICAL AND HORIZONTAL ASSEMBLY Accessories: see page ML-10



IMPORTANT: when pairing ZC... modules with TC... modules, please check the required Z axis stroke, as this could be limited by the size of the module plates sizes.

| Performances      | ZCL 220 - ZCEL 220 |                     |  |
|-------------------|--------------------|---------------------|--|
| Max. stroke       | 11,305             | [mm]                |  |
| Max. speed        | 4                  | [m/s]               |  |
| Max. acceleration | 25                 | [m/s <sup>2</sup> ] |  |
| Repeatability     | ± 0.1              | [mm]                |  |

| Suggested working load conditions |                     |                     |                     |                    |                    |                    |  |
|-----------------------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|--|
| Module                            | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |  |
| ZCL 220                           | 810                 | 2,940               | 4,560               | 4,000              | 10,400             | 12,000             |  |
| ZCEL 220                          | 810                 | 2,940               | 4,560               | 6,000              | 10,400             | 12,000             |  |

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

Data **ZCL 220 ZCEL 220** Belt 50 ATL 10 75 ATL 10 4 caged ball roller slides 25 Slide Load bearing profile Logyca (see page ML-13) Pulley Ø 95.49 [mm] Linear displacement per rev. 300 [mm]



Fx= Max belt strength

| Belt | Α   | В  | С  | D   | E   | F   |
|------|-----|----|----|-----|-----|-----|
| 50   | 140 | 70 | 70 | 118 | 395 | 255 |
| 75   | 164 | 82 | 82 | 143 | 429 | 265 |

| Weights                | <b>ZCL 220</b>        | ZCEL 22               | 20                  |
|------------------------|-----------------------|-----------------------|---------------------|
| Inertia of the pulley  | 0.0067                | 0.010                 | [kgm <sup>2</sup> ] |
| Belt weight            | 0.34                  | 0.51                  | [kg/m]              |
| Carriage weight        | 27.5                  | 37.5                  | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> =53 | M <sub>base</sub> =57 | [kg]                |
| 1,000 mm profile       | q=32.3                | q=32.7                | [kg]                |

ZMCPLL 105 - ZMCLL 105 OMEGA BELT DRIVE SUITABLE FOR VERTICAL ASSEMBLY

Patent pending

LOAD COMPENSATION WITH INTEGRATED PNEUMATIC CYLINDER



| Performances                  | ZMCPLL       | 105                 |
|-------------------------------|--------------|---------------------|
| Integrated pneumatic cylinder | Ø 50         | [mm]                |
| Maximum cylinder stroke       | 2000         | [mm]                |
| Max Speed                     | 3            | [m/s]               |
| Maximum acceleration          | 25           | [m/s <sup>2</sup> ] |
| Repositioning precision       | <b>±</b> 0,1 | [mm]                |

| Suggested working load conditions |                     |                     |                     |                    |                    |                    |  |
|-----------------------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|--|
| Module                            | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |  |
| ZMCPLL10                          | 05 260              | 700                 | 700                 | 2.500              | 4.500              | 4.500              |  |

The dynamic values indicated do not correspond to maximum theoretical load capacities. They already take safety factors into account which are suitable for machinery in the automation sector. In the event of combined stress consult the technical support service.

| Constructive data                  |                            |
|------------------------------------|----------------------------|
| Belt                               | 50 AT 10                   |
| Slide                              | 4 ball slides size 15 [mm] |
| Profile                            | M105                       |
| Pulley Ø                           | 92,3 [mm]                  |
| Linear displacement per revolution | 290 [mm]                   |



Modline

Fx= Max belt strenght

| Weights                |                        |                     |
|------------------------|------------------------|---------------------|
| Inertia of the pulley  | -                      | [kgm <sup>2</sup> ] |
| Belt weight            | 0,30                   | [kg/m]              |
| Carriage weight        | 29                     | [kg]                |
| Base Module (stroke=0) | M <sub>base</sub> = 37 | [kg]                |
| 1.000 profile          | q=15                   | [kg]                |

**ZMCH 105** 

Patent pending



| Performances           | ZMCH 1 | 05                  |
|------------------------|--------|---------------------|
| Max Speed              | 3      | [m/s]               |
| Max Acceleration       | 25     | [m/s <sup>2</sup> ] |
| Repositioning accuracy | ± 0,1  | [mm]                |

| Suggested working load conditions |                     |                     |                     |                    |                    |                    |  |  |
|-----------------------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|--|--|
| Module                            | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |  |  |
| ZMCH105                           | 260                 | 700                 | 700                 | 2.500              | 4.500              | 4.500              |  |  |

The dynamic values indicated do not correspond to maximum theoretical load capacities. They already take safety factors into account which are suitable for machinery in the automation sector. In the event of combined stress consult the technical support service.

| Constructive data                  |                       |      |
|------------------------------------|-----------------------|------|
| Belt                               | 50 AT 10              |      |
| Sliding                            | 4 ball slides size 15 | [mm] |
| Profile                            | M105                  |      |
| Pulley Ø                           | 92,3                  | [mm] |
| Linear displacement per revolution | 290                   | [mm] |



Fx= Max belt strenght

| Weights                |                        |                     |
|------------------------|------------------------|---------------------|
| Inertia of the pulley  | -                      | [kgm <sup>2</sup> ] |
| Belt weight            | 0,30                   | [kg/m]              |
| Carriage weight        | 29                     | [kg]                |
| Base module (stroke=0) | M <sub>base</sub> = 37 | [kg]                |
| 1.000 mm profile       | q=15                   | [kg]                |

## SERIE K MODULES GEAR MOTOR ASSEMBLY POSSIBLE FROM EACH SIDE

## KCH 100/150/200

### GEAR MOTOR ASSEMBLY POSSIBLE FROM EACH SIDE



### Registered model

The motor connection is pre-engineered directly on the drive head by means of a removable flange, but integrated in the actual head. The drive shaft and/or the driven shaft are locked into the pulley by shrink-discs. (The gearbox can be easily removed without disassembling the head). Please see page ML-6 to identify the desired motor side (left or right); page ML-61 for shrink-disc and flange diameter and page ML-10 for the order code setting. Non-standard diameters are available upon request.



| Module                   | A Ø [mm] | B Ø [mm] | V [mm] | P [mm] | Z [mm] |
|--------------------------|----------|----------|--------|--------|--------|
|                          |          |          |        |        |        |
| MC 65 - TC 100           | 12H7     |          | 67     | 34     | 0      |
|                          |          | 14H7     | 67     | 34     | 0      |
|                          | 16H7     |          | 80     | 52.4   | 1      |
| MC 80                    |          | 19H7     | 80     | 49.4   | 1      |
|                          |          | 20H7     | 80     | 49.4   | 1      |
| MC 105 - TC 180          | 19H7     |          | 105    | 49     | 13.5   |
|                          |          | 25H7     | 105    | 51     | 8      |
| TC 170 - TC 200          | 25H7     |          | 117    | 54.5   | 12.5   |
|                          |          | 32H7     | 117    | 57.5   | 7      |
|                          | 25H7     |          | 142    | 79.5   | 12.5   |
| TC 220 - TC 280 - TC 360 |          | 32H7     | 142    | 82.5   | 7      |
|                          |          | 40H7     | 142    | 82.5   | 7      |
| 70.00 70.00              | 16H7     |          | 100    | 62.4   | 0      |
| ZC 60 - ZC 90            |          | 19H7     | 100    | 62.4   | 0      |
|                          |          | 20H7     | 100    | 62.4   | 0      |
| ZC 100 - ZCY 180         | 25H7     |          | 108    | 48.5   | 11.5   |
| 20 100 201 100           |          | 32H7     | 108    | 52.5   | 6      |
|                          | 25H7     |          | 108    | 48.5   | 11.5   |
| ZC 170 - 220             |          | 32H7     | 108    | 52.5   | 6      |
|                          |          | 40H7     | 108    | 52.5   | 6      |
|                          | 25H7     |          | 143    | 65     | 12     |
| ZCE 170 - 220            |          | 32H7     | 143    | 95     | 12     |
|                          |          | 40H7     | 143    | 95     | 12     |

Phosphating of drive and driven pulleys.

# **Adapter Flanges**

Standard machining for planetary gearboxes - MP or MPTR, LP, EP series. Machining is performed directly on the removable flange in a symmetric position, suitable for both sides.

### Ex. module: MC 105









Drilled flange: code E Blind flange: code X

| Linear module      | Gearbox code |    |    | Size |
|--------------------|--------------|----|----|------|
| Series             |              | D  | Ø  | G    |
| MC 65              | LP 050       | 35 | 12 | 44   |
| KC 30-50           | EP55         | 32 | 12 | 40   |
|                    | MP053        | 32 | 12 | 40   |
| MC 80-105 - ZC 60  | MPTR080      | 50 | 19 | 65   |
|                    | LP070        | 52 | 16 | 62   |
| ZC 90              | EP75 AA      | 40 | 14 | 52   |
| MC 105 - TC-ZC 100 | MPTR105      | 70 | 25 | 05   |
|                    |              |    | 25 | 85   |
| MC 105 - TC 180    | LP090        | 68 | 22 | 80   |
|                    | EP90 TT      | 50 | 19 | 65   |
|                    | MPTR130      | 80 | 32 | 110  |
| TC 170-360         | LP120        | 90 | 32 | 108  |
| ZC 170-220         | EP120 TT     | 70 | 25 | 85   |

# **Connecting shafts for parallel modules**

We can supply standard hollow shaft connections, according to your application requirements.

Please specify the type of module to be connected, together with speed, "L" centre-distance, working and peak torques, accuracy.

Some simplified solutions with solid shafts are available for low-speed applications and with "L" of up to 2,000 mm. If high-speeds and/or "L" of more than 2,000 mm are needed, please ask our technical dept. for the shaft scaling.

## The complete kit includes all the components needed to make the connection: tube, shrink-discs, shaft crop ends for connection between pulleys and shrink-discs, any supports. Tube material: 6060 aluminium alloy

The customer is responsible for ensuring compliance with accident prevention rules in relation to all rotating parts.

### Type 1 - Elastic joint connecting shafts, normally suitable for low-speeds



Type 2 - Stainless steel blade joint connecting shafts, suitable for backlash-free transmissions



Type 3 - Stainless steel blade joint connecting shafts and pedestal bearings, suitable for backlash-free transmissions









| <b>R(*</b> | ) K | F   | Ν  | S   | Lmax  | MTwork [Nm] | Mom.Inertia. [Kgm <sup>2</sup> ]     | Type 1: Code/L | Type 2: Code/L | Type 3: Code/L |
|------------|-----|-----|----|-----|-------|-------------|--------------------------------------|----------------|----------------|----------------|
| 40         | 67  | 55  | 20 | 200 | 6,200 | 20          | 0.0028 + 0.46 x L. x10 <sup>-6</sup> | 436.0948       | 436.0957       | 436.0965       |
| 50         | 81  | 65  | 25 | 235 | 6,300 | 35          | 0.0092 + 0.66 x L. x10 <sup>-6</sup> | 436.0949       | 436.0958       | 436.0966       |
| 50         | 93  | 80  | 25 | 235 | 6,300 | 70          | 0.0161 + 1.34 x L. x10 <sup>-6</sup> | 436.0951       | 436.0971       | 436.0974       |
| 70         | 104 | 95  | 25 | 235 | 6,400 | 100         | 0.0293 + 2.93 x L. x10 <sup>-6</sup> | 436.0952       | 436.0960       | 436.0968       |
| 80         | 126 | 120 | 25 | 250 | 6,400 | 190         | 0.0793 + 4.5 x L. x10 <sup>-6</sup>  | 436.0955       | 436.0963       | 436.0984       |
| 90         | 143 | -   | -  | -   | 6,500 | 300         | 0.1456 + 6.53 x L. x10 <sup>-6</sup> | -              | 436.0986       | 436.0987       |
| 110        | 185 | -   | -  | -   | 6,000 | 420         | 0.3499 + 12.3 x L. x10 <sup>-6</sup> | 436.0144       | 436.0145       | 436.0146       |

The S value can vary by  $\pm$  20%, Lmax by  $\pm$  3%, according to the chosen type. Please contact our technical dept.

## Spare rollers with pins

Make sure that all the components are locked in place with the appropriate screws. The recommended tightening torque for pin locking screws and nuts is 50 Nm.



| Max. loa | d factors fo                          | or hardene | ed and temper | ed guides |  |  |  |  |
|----------|---------------------------------------|------------|---------------|-----------|--|--|--|--|
| Roller   | Cw [N]                                | C0w[N]     | Fr amm.[N]    | V max.    |  |  |  |  |
| Ø30      | 5,000                                 | 3,000      | 1,350         | 7 m/s     |  |  |  |  |
| Ø40      | 9,800                                 | 6,200      | 2,600         | 7 m/s     |  |  |  |  |
| Ø52      | 15,800                                | 10,500     | 4,400         | 6 m/s     |  |  |  |  |
| Ø62      | 21,100                                | 14,500     | 5,600         | 5 m/s     |  |  |  |  |
| Max. lo  | Max. load factors for hardened guides |            |               |           |  |  |  |  |
| Roller   | Cw [N]                                | C0w[N]     | Fr amm.[N]    | V max.    |  |  |  |  |
| Ø30      | 5,000                                 | 3,000      | 400           | 2 m/s     |  |  |  |  |
| Ø40      | 9,800                                 | 6,200      | 800           | 13 m/s    |  |  |  |  |
| Ø52      | 15,800                                | 10,500     | 1,400         | 2.5 m/s   |  |  |  |  |
| Ø62      | 21,100                                | 14,500     | 1,900         | 2 m/s     |  |  |  |  |
| Spare ro | oller with pir                        | า          | Weight [kg]   | Code      |  |  |  |  |
| Ø30 Cor  | ncentric                              |            | 0.02          | 406.0056  |  |  |  |  |
| Ø40 Cor  | ncentric                              |            | 0.22          | 205.0464  |  |  |  |  |
| Ø40 Ecc  | entric (± 0.75                        | 0.25       | 205.0463      |           |  |  |  |  |
| Ø52 Cor  | centric                               |            | 0.4           | 205.0163  |  |  |  |  |
| Ø62 Cor  | ncentric                              |            | 0.55          | 205.0165  |  |  |  |  |

# **Mounting brackets**









Material: aluminium alloy 6082

Ś

| Module   |             |    |    |    |     |    |     |      |    |    |     |          |
|----------|-------------|----|----|----|-----|----|-----|------|----|----|-----|----------|
| type     | bxh         | Α  | L  | Т  | d   | н  | Р   | С    | F  | В  | М   | Code     |
| MC 65    | 67x65       | 25 | 50 | 25 | 6.7 | 20 | 6.8 | 13.5 | 10 | 18 | 87  | 415.0388 |
| MC 80    | 80x80       | 25 | 50 | 25 | 6.7 | 25 | 6.8 | 18.6 | 10 | 18 | 100 | 415.0760 |
| TC-ZC 10 | 0           | 25 | 50 | 25 | 6.7 | 27 | 6.8 | 20.6 | 10 | 18 | 120 | 415.0764 |
| MC 105   | 105x105     | 30 | 50 | 25 | 9   | 30 | 9.5 | 23.6 | 12 | 22 | 129 | 415.0761 |
| TC 180   | 180x90      | 30 | 50 | 25 | 9   | 25 | 9.5 | 18   | 12 | 25 | 204 | 415.0773 |
| TC 170   | 120x170     |    |    |    |     |    |     |      |    |    | 198 |          |
| TC 200   | 120x200     | 30 | 90 | 50 | 11  | 40 | 11  | 28.3 | 14 | 25 | 228 | 415.0762 |
| TC 220   | 120x220     |    |    |    |     |    |     |      |    |    | 248 |          |
| TC 280   | 170x280     | 30 | 90 | 50 | 11  | 20 | 11  | 11.3 | 14 | 25 | 308 | 415.0763 |
| TC 280Ve | rt. 280x170 | 30 | 90 | 50 | 11  | 20 | 11  | 13.5 | 14 | 25 | 198 | 915.1174 |
|          |             |    |    |    |     |    |     |      |    |    |     |          |

()

## Assembly brackets







Material: natural, anodised anticorodal alloy.

| Thr      | ead |    |    |    |   |          |    | Code   |         |  |
|----------|-----|----|----|----|---|----------|----|--------|---------|--|
| А        | В   | С  | D  | Е  | S | Txt      | ØM | Ø      | Μ       |  |
| 45       | 45  | 20 | 25 | 25 | 5 | 20x6.5   | 6  | A30-76 | A 30-86 |  |
| 35       | 25  | 20 | 19 | 15 | 5 | 20x6.5   | 4  | A30-54 | A 30-64 |  |
| 35       | 25  | 20 | 19 | 15 | 5 | 20x6.5   | 5  | A30-55 | A 30-65 |  |
| 35       | 25  | 20 | 19 | 15 | 5 | 20x65    | 6  | A30-56 | A 30-66 |  |
|          |     |    |    |    |   |          |    |        |         |  |
| 25       | 25  | 15 | 14 | 15 | 4 | 13.5x5.5 | 3  | B30-53 | B 30-63 |  |
| 25       | 25  | 14 | 14 | 15 | 4 | 13.5x5.5 | 4  | B30-54 | B 30-64 |  |
| 25       | 25  | 15 | 14 | 15 | 4 | 13.5x5.5 | 5  | B30-55 | B 30-65 |  |
| 25       | 25  | 15 | 14 | 15 | 4 | 13.5x5.5 | 6  | B30-56 | B 30-66 |  |
| <u> </u> |     |    |    |    |   |          |    |        |         |  |

Suitable for all the modules

# **Filler strips**





PVC filler strips, grey or black L=5,000 - 6,000 mm for any longitudinal 8 mm slot

Suitable for series: MC 80-105, ZC 60-90-100-170, TC 100-180

| Color               | Code A /Length    |
|---------------------|-------------------|
| grey                | Cod.A39-25/5000   |
| black               | Cod.A39-26/5000   |
| orange (on request) | Cod.A39-25/6000 A |

## **Spring nut**





L1



Code A: MC 80-105, ZC 60-90-100-170, TC 100-180 Code B: MC 65

| Single plate | Code A | Code B |
|--------------|--------|--------|
| M5           | A32-55 | B32-55 |
| M6           | A32-65 | B32-65 |
| M8           | A32-85 | B32-85 |
| Double plate | Code A | Code B |
| M6           | A32-67 | B32-67 |



Simple nut





**Material:** galvanised steel. Insert through the end of the profile. Suitable for series:

MC 80-105, ZC 60-90-100-170, TC 100-180

| Thread | Code     |
|--------|----------|
| M5     | 209.2431 |
| M6     | 209.2432 |
| M8     | 209.2433 |

## Front insertable spring nut





**Material:** galvanised steel, harmonic steel spring. To be inserted through the slot. Suitable for series:

### MC 65

| Thread | Code B  |
|--------|---------|
| M3     | BD31-30 |
| M4     | BD31-40 |
| M5     | BD31-50 |
| M6     | BD31-60 |
|        |         |

## Simple Nut





Materiale: galvanised steel.

To be inserted through the slot. Suitable for series:

## MC 65

| B32.40 |
|--------|
|        |
| B32.50 |
| B32.60 |
|        |

M L

## Flat nut





**Material:** galvanised steel. Insert through the end of the profile. Retaining spring upon request.

TC-ZC 100, TC 180, ZCY 180

| Thread | Code     |
|--------|----------|
| M4     | A32-40   |
| M5     | A32-50   |
| M6     | A32-60   |
| M8     | A32-80   |
| Molla  | 211.1061 |

## Semi-rounded threaded inserts with spring

Threaded plate for base profile 45, 50 and 60. Material: galvanised steel. Important: to be inserted through the longitudinal slots before assembling.

### Suitable for series: TC-ZC 100, ZCY 180, TC 170-180-200-220-360, ZC 170-220





| Thread | Code 18x18 | Code 20x20 |
|--------|------------|------------|
| M4     | 209.0031   | 209.0023   |
| M5     | 209.0032   | 209.0019   |
| M6     | 209.0033   | 209.1202   |
| M8     | 209.0034   | 209.0467   |

Plastic compound spring for vertical positioning of insert.





| Spring                         | Code     |
|--------------------------------|----------|
| Suitable for all inserts 18x18 | 101.0732 |

# **Alignment nuts**

Modline

M6

## Nuts for steel guide rails

Material: galvanised steel.

### Code 209.1855

Alignment nuts. V-shaped guide rail: 35x16 Profile with slot. 12.5 mm. Series: **TC 170-200-220-280-360 e ZC 170-220** 







## Alignment nut for slot 12.5 mm





Material: galvanised steel. Suitable for series: TC 170-200-280-360 and ZC 170-220

| Thread | Code     |
|--------|----------|
| M5     | 215.1768 |
| M6     | 215.1769 |
| M8     | 215.1770 |
| M10    | 215.2124 |

## Alignment nut for slot 12.5 mm front insertable





Material: galvanised steel. Suitable for series: TC 170-200-280-360 and ZC 170-220

| Code     |
|----------|
| 215.1771 |
| 215.1772 |
| 215.1773 |
| 215.2125 |
|          |

## **Threaded nuts and plates**







M12 (CH19) hexagonal-head screws can be used as stud bolts in profiles with 12.5 mm slots.

# Material: galvanised steel. Suitable for series: TC 170-200-220-280-360 and ZC 170-220

| Thread | Туре           | L   | Code     |  |
|--------|----------------|-----|----------|--|
| M10    | 1-hole plate   | 40  | 215.0477 |  |
| M12    | 1-hole plate   | 40  | 209.1281 |  |
| M10    | 1-hole plate   | 20  | 209.1277 |  |
| M10    | 2-holes plate* | 80  | 209.1776 |  |
| M10    | 3-holes plate* | 150 | 209.1777 |  |
| M10    | 4-holes plate* | 200 | 209.1778 |  |
| M10    | 5-holes plate* | 250 | 209.1779 |  |
| M10    | 6-holes plate* | 300 | 209.1780 |  |
| M10    | 7-holes plate* | 350 | 209.1781 |  |

\* Hole centre-distance: 50 mm.



Mechanical and inductive micro-switches on MC series.



Multi-channel micro-switch on TC series.

**Micro-switches and brackets are supplied according to the needs of the application.** We can also supply cams and cam-holders for mechanical micro-switches in accordance with DIN standards.

# **Cams and cam-holders for micro-switches**



Mechanical and inductive micro-switches on MC series.

## Long cams

Cams in accordance with DIN 69639 except when marked "#". Material: steel with hardened and ground surface.





## **Short cams**

Cams in accordance with DIN 69639 Material: steel with hardened and ground surface.





| С  | D  | Code     |
|----|----|----------|
| 0  | 25 | 211.2128 |
| 4  | 29 | 211.2129 |
| 10 | 35 | 211.2130 |
| 16 | 41 | 211.2131 |

### **Cam-holder guides**

Cams in accordance with DIN 6963 Materiale: lega di alluminio 6060 anodizzato





| n° | В   | Α   | L     | Code     |
|----|-----|-----|-------|----------|
| 3  | 3   | 36  | 2,000 | 202.2138 |
| 4  | 5.5 | 53  | 3,000 | 202.2139 |
| 6  | 5.5 | 77  | 3,000 | 202.2140 |
| 8  | 5.5 | 101 | 3,000 | 202.2141 |

# **Special Options**

M L

### Reader system with magnetic scale and sensor

The magnetic scale is applied to the body of the module using a supporting and protective profile. Precision of between  $\pm$  0.015 and  $\pm$  0.05 mm Max speed = 4  $\div$  10 m/s (depending on the type)





### Twin drive head

Version with drive head on both sides.





### Precision profile machining

Profiles can be machined along their entire length, to provide the required precision or according to application specifications.



### Rotatable load-bearing profile to fully exploit the moment of inertia

The load-bearing profile can be rotated in order to change the overall dimensions, or to fully exploit the moment of inertia.



## Belt protection for series MC - 80 - 105

Guard system consisting of a magnetic stainless steel foil to protect the belt from dust and external agents (code: LI), which is attached to the profile.

NB: Avoid the use of a metallic band in the presence of ferrous filings. Optional.





## TC series of linear modules with pulley axis turned at 90°

In some applications which involve the use of high speeds and accelerations, the assembly of linear units having a vertical pulley axis and a centre-distance of more than 4 m may force the toothed belt and result in the need for premature maintenance. In this case we suggest you mount the pulleys and the belt in a horizontal position. The modification as shown in the figure below can be requested for the MODLINE TCS series. Optional.





## TC multi-carriage linear modules with intermediate belt transmission

Example of horizontal transfer with integrated belt and transmission pulley support, in an intermediate position, all incorporated inside the profile. (Registered design)

Special feature: note the compensating cylinders and the horizontal cylinder for the different travel of carriage no. 3.



# Anti-drop device with pneumatic brake system

Modline

Ant-droop devices, available in a range of sizes, are supplied according to the type of application. For instance, they can act as a mechanical stop to block the free-falling load at any stroke point, or as a lock in static conditions at any position. Two-way blocking occurs following an unexpected pressure drop. A mechanical release system is available upon request (patented). Catalogue available upon request. The kit includes: braking device and rod with relative supports, micro-switch and solenoid valve. Operating pressure 3-6 Bar. With no pressure = locked.



### 1- Static rod blocking device

| Тур | e Code   | Rod blocking force [N] | Stroke [mm] |
|-----|----------|------------------------|-------------|
| Α   | 236.0018 | / 1,200                | /           |
| A   | 236.0018 | / 1,900                | /           |
| A   | 236.0018 | / 3,000                | /           |
| A   | 236.0018 | / 5,400                | /           |
| A   | 236.0018 | / 7,500                | /           |
| Α   | 236.0018 | / 12,000               | /           |

Emergency brake for free-falling load.

1- Dynamic rod blocking device

| <u></u> |          |                        |             |  |
|---------|----------|------------------------|-------------|--|
| Туре    | Code     | Rod blocking force [N] | Stroke [mm] |  |
| В       | 236.0019 | / 3,000                | /           |  |
| в       | 236.0019 | / 5,400                | /           |  |
| В       | 236.0019 | / 7,500                | /           |  |
| в       | 236.0019 | / 12,000               | /           |  |
|         |          |                        |             |  |

# Lock-pin (stopper cylinders)

Lock-pin devices, available in two sizes, suitable to block the vertical axes in position during horizontal movements. (e.g.: maintenance). The lock-pins are provided with a through rod.

Select the size according to the load. The kit includes: drilled plate for rod, stopper cylinder, micro-switch. Max. operating pressure: 10 bar.





Special plate upon request Upon request C + corsa Drilled plate

#### 1- Lock-pin device

| ØD rod | stroke | С    | Е  | F  | G  | Kit Code |
|--------|--------|------|----|----|----|----------|
| 20     | 20     | 60.5 | 50 | 38 | 16 | 236.0021 |
| 32     | 30     | -    | -  | -  | -  | 236.0022 |

| 2- Accessory: drilled plate for rod |      |              |  |  |  |  |  |
|-------------------------------------|------|--------------|--|--|--|--|--|
|                                     | Deee | Lange of the |  |  |  |  |  |

| ØD rod | Base | Length | Thickness |  |  |
|--------|------|--------|-----------|--|--|
| 20     | 60   | 100    | 39        |  |  |
| 32     | 60   | 100    | 39        |  |  |

# Index

| Code    | page  | Code pag  | ge    | Code         | page    | Code p   | age   | Code p     | age   |
|---------|-------|-----------|-------|--------------|---------|----------|-------|------------|-------|
| 1010732 | ML-66 | 2151773 M | IL-67 | A30-65       | ML-64   | MA1-4    | ML-12 | TVH 180    | ML-26 |
| 2022138 | ML-68 | 2152124 M | IL-67 | A30-66       | ML-64   | MA1-5    | ML-12 | TVS 170    | ML-27 |
| 2022139 | ML-68 | 2152125 M | IL-67 | A30-76       | ML-64   | MCH 105  | ML-20 | TVS 220    | ML-28 |
| 2022140 | ML-68 | 2360018 M | IL-71 | A30-86       | ML-64   | MCH 65   | ML-16 | ZCEL 170   | ML-54 |
| 2022141 | ML-68 |           | IL-71 | A32-40       | ML-66   | MCH 80   | ML-18 | ZCEL 220   | ML-56 |
| 2050163 | ML-63 | 2360021 M | IL-71 | A32-50       | ML-66   | MCHH 105 | ML-21 | ZCERQ 170  | ML-53 |
| 2050165 | ML-63 | 2360022 M | IL-71 | A32-55       | ML-65   | MCR 105  | ML-19 | ZCERQ 220  | ML-55 |
| 2050463 | ML-63 |           | IL-14 | A32-60       | ML-66   | MCR 65   | ML-15 | ZCG 60     | ML-45 |
| 2050464 | ML-63 | 4060056 M | IL-63 | A32-65       | ML-65   | MCR 80   | ML-17 | ZCG 90     | ML-47 |
| 2090019 | ML-66 | 4150388 M | IL-63 | A32-67       | ML-65   | MCS 105  | ML-20 | ZCL 100    | ML-52 |
| 2090023 | ML-66 | 4150760 M | IL-63 | A32-80       | ML-66   | MCS 65   | ML-16 | ZCL 170    | ML-54 |
| 2090298 | ML-67 | 4150761 M | IL-63 | A32-85       | ML-65   | MCS 80   | ML-18 | ZCL 220    | ML-56 |
| 2090467 | ML-66 | 4150762 M | IL-63 | A39-25/5000  | 0ML-64  | MTR 105  | ML-23 | ZCL 60     | ML-46 |
| 2091202 | ML-66 | 4150763 M | IL-63 | A39-25/6000/ | AML-64  | MTR 80   | ML-22 | ZCL 90     | ML-49 |
| 2091277 | ML-67 | 4150764 M | IL-63 | A39-26/5000  | 0ML-64  | MVH 105  | ML-24 | ZCRQ 100   | ML-51 |
| 2091281 | ML-67 | 4150773 M | IL-63 | B30-53       | ML-64   | MVHH 105 | ML-25 | ZCRQ 170   | ML-53 |
| 2091776 | ML-67 | 4360144 M | IL-62 | B30-54       | ML-64   | MVR 105  | ML-23 | ZCRQ 220   | ML-55 |
| 2091777 | ML-67 | 4360145 M | IL-62 | B30-55       | ML-64   | MVR 80   | ML-22 | ZCRR 90    | ML-48 |
| 2091778 | ML-67 | 4360146 M | IL-62 | B30-56       | ML-64   | MVS 105  | ML-24 | ZCY 180    | ML-50 |
| 2091779 | ML-67 | 4360948 M | IL-62 | B30-63       | ML-64   | TCG 100  | ML-29 | ZMCPLL 105 | 5     |
| 2091780 | ML-67 | 4360949 M | IL-62 | B30-64       | ML-64   | TCG 180  | ML-31 | ML-57      |       |
| 2091781 | ML-67 | 4360951 M | IL-62 | B30-65       | ML-64   | TCH 100  | ML-30 | ZMCLL 105  | ML-57 |
| 2091855 | ML-67 | 4360952 M | IL-62 | B30-66       | ML-64   | TCH 170  | ML-34 | ZMCH 105   | ML-58 |
| 2092431 | ML-65 | 4360955 M | IL-62 | B32-40       | ML-65   | TCH 180  | ML-32 | KCH 100    | ML-59 |
| 2092432 | ML-65 | 4360957 M | IL-62 | B32-50       | ML-65   | TCH 200  | ML-36 | KCH 150    | ML-59 |
| 2092433 | ML-65 | 4360958 M | IL-62 | B32-55       | ML-65   | TCH 220  | ML-38 | KCH 200    | ML-59 |
| 2111061 | ML-66 | 4360960 M | IL-62 | B32-60       | ML-65   | TCH 280  | ML-40 | TECRQ 170  | ML-43 |
| 2112128 | ML-68 | 4360963 M | IL-62 | B32-65       | ML-65   | TCH 360  | ML-42 | TECH 170   | ML-43 |
| 2112129 | ML-68 | 4360965 M | IL-62 | B32-67       | ML-65   | TCRQ 170 | ML-33 | TECRR 180  | ML-44 |
| 2112130 | ML-68 | 4360966 M | IL-62 | B32-85       | ML-65   | TCRQ 180 | ML-31 | TECH 180   | ML-44 |
| 2112131 | ML-68 | 4360968 M | IL-62 | B35-15       | ML-64   | TCRQ 200 | ML-35 |            |       |
| 2112132 | ML-68 | 4360971 M | IL-62 | BD31-30      | ML-65   | TCRQ 220 | ML-37 |            |       |
| 2112133 | ML-68 | 4360974 M | IL-62 | BD31-40      | ML-65   | TCRQ 280 | ML-39 |            |       |
| 2112134 | ML-68 | 4360984 M | IL-62 | BD31-50      | ML-65   | TCRP 280 | ML-39 |            |       |
| 2112135 | ML-68 | 4360986 M | IL-62 | BD31-60      | ML-65   | TCRP 360 | ML-41 |            |       |
| 2112136 | ML-68 | 4360987 M | IL-62 | E01-4        | ML-11   | TCS 100  | ML-30 |            |       |
| 2150477 | ML-67 | 7400568 M | IL-12 | E01-5        | ML-12   | TCS 170  | ML-34 |            |       |
| 2151768 | ML-67 | 9151174 M | IL-63 | F01-1        | ML-11   | TCS 180  | ML-32 |            |       |
| 2151769 | ML-67 | A30-54 M  | IL-64 | M 65X67      | ML-11   | TCS 200  | ML-36 |            |       |
| 2151770 | ML-67 | A30-55 M  | IL-64 | M 80X80      | ML-11   | TCS 220  | ML-38 |            |       |
| 2151771 | ML-67 |           | IL-64 | M 105X105    | 5 ML-11 | TCS 280  | ML-40 |            |       |
| 2151772 | ML-67 | A30-64 M  | IL-64 | MA1-2        | ML-12   | TCS 360  | ML-42 |            |       |





Via Trieste 26 I-20871 Vimercate (MB) Phone: (+39) 039 62 59 1 www.rollon.it - infocom@rollon.it

### Branches:

ROLLON GmbH - GERMANY

Bonner Strasse 317-319 D-40589 Düsseldorf Phone: (+49) 211 95 747 0 www.rollon.de - info@rollon.de

## ROLLON S.A.R.L. - FRANCE

**ROLLON Ltd - CHINA** 

Les Jardins d'Eole, 2 allée des Séquoias F-69760 Limonest Phone: (+33) (0) 4 74 71 93 30 www.rollon.fr - infocom@rollon.fr



2/F Central Plaza, No. 227 North Huang Pi Road, China, Shanghai, 200003 Phone: (+86) 021 2316 5336 www.rollon.cn.com - info@rollon.cn.com

## ROLLON B.V. - NETHERLANDS

Ringbaan Zuid 8 6905 DB Zevenaar Phone: (+31) 316 581 999 www.rollon.nl - info@rollon.nl

### **ROLLON Corporation - USA**

101 Bilby Road. Suite B Hackettstown, NJ 07840 Phone: (+1) 973 300 5492 www.rolloncorp.com - info@rolloncorp.com

## ROLLON India Pvt. Ltd. - INDIA 🛛 🖊 🔻

1st floor, Regus Gem Business Centre, 26/1 Hosur Road, Bommanahalli, Bangalore 560068 Phone: (+91) 80 67027066 www.rollonindia.in - info@rollonindia.in Distributors

**Rep. Offices:** 

## ROLLON S.p.A. - RUSSIA

• Rollon Branches & Rep. Offices

117105, Moscow, Varshavskoye shosse 17, building 1, office 207. Phone: +7 (495) 508-10-70 www.rollon.ru - info@rollon.ru

## ROLLON Ltd - UK

The Works 6 West Street Olney Buckinghamshire, United Kingdom, MK46 5 HR Phone: +44 (0) 1234964024 www.rollon.uk.com - info@rollon.uk.com

v

### **Regional Manager:**



Itaim Bibi - 04534-011, São Paulo, BRASIL Phone: +55 (11) 3198 3645 www.rollonbrasil.com.br - info@rollonbrasil.com

### Consult the other ranges of products



All addresses of our global sales partners can also be found at www.rollon.com

Changes and errors excepted. The text and images may be used only with our permission.

