

Linear Evolution

Компания Rollon S.p.A. ведет свою историю с 1975г. как производитель систем линейных перемещений. На настоящий момент Группа Rollon занимает лидирующие позиции в разработке, производстве и поставке линейных подшипников, телескопических направляющих и актуаторов. Центральный офис и производство располагаются в Италии, также компания широко представлена в мире подразделениями, представительскими офисами и развитой сетью дистрибуции. Продукция Rollon используется в самых различных областях промышленности и изобретательных решениях день за днем доказывая свою эффективность.

Решения для линейных перемещений

Линейные подшипники

Роликовые С шариковым сепаратором С системой рециркуляции шариков

Телескопические направляющие

Полного и частичного выдвижения Высокой грузоподъемности Для перемещения вручную

Актуаторы

С ременным приводом С шариковинтовой парой С зубчатой рейкой

Краткая характеристика компании

- Полный ассортимент линейных направляющих и систем линейного перемещения, включая телескопические и актуаторы.
- Развёрнутая по всему миру сеть сбыта, включающая собственные филиалы и дистрибьюторские компании.
- Оперативная доставка в любую точку мира.
- Огромное ноу-хау в области решения конкретных прикладных задач.

> Стандартные решения

Широкий выбор различных моделей и типоразмеров Линейные направляющие с каретками на роликах или с шариковым сепаратором Телескопические направляющие, рассчитанные на высокую нагрузку Линейные актуаторы с ременным приводом или с шариковинтовой парой

Системы многоосевого перемещения

Сотрудничество с Заказчиком

Многолетний накопленный опыт использования продукции по всему миру Консалтинговые услуги по реализации проектов Максимизация производительности и оптимизация затрат

Возможность модификации изделий под конкретные нужды

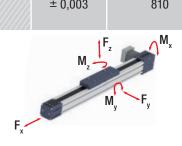
Специальные продукты Исследования и разработка новых технических решений Технологии, применимые в самых различных областях Оптимальные защитные покрытия поверхностей

Области применения

Eco System

Серия "ЕСО"	
Описание актуаторов серии "ЕСО"	ES-2
Компоненты	ES-3
Система линейного перемещения	ES-4
ECO 60 SP2 - ECO 60 CI	ES-5
ECO 80 SP2 - ECO 80 SP1 - ECO 80 CI	ES-6
ECO 100 SP2 - ECO 100 SP1 - ECO 100 CI	ES-7
Гладкие валы, Полые валы	ES-8
Параллельный монтаж актуаторов, Аксессуары	ES-9
Код заказа	ES-12
Многоосевые системы	ES-13

Статическая нагрузка и долговечность	
Plus-Clean Room-Smart-Eco-Precision	SL-2
Статическая нагрузка и долговечность UNILINE	SL-4
Опросный пист	SI -9


Технические характеристики

	Обозначение Группа Серия		Направл	яющие		Привод		Устойчивость к коррозии	Защита
			Профильные	Роликовые	Зубчатый ремень	Шариковинтовая пара	Шариковинтовая Зубчатая пара рейка		
		ELM						• •	
Plus System		ROBOT						•	
		SC						•	
Clean Room System	7	ONE			Onnannano			•	
	0	E-SMART							
Smart System	50	R-SMART							
	1011	S-SMART							
Eco System		ECO			Opposes Services Serv				
Uniline System	To local distriction of the second districti	A/C/E/ED/H							
		TH				<i>m</i> _m			
Precision		TT				<i>m</i> _ <i>m</i>			
System		TV				<i>Ш</i>			
	Hale (TK				<i>m</i> [] <i>m</i>			

Указанные данные не могут отображать всего многообразия применений и должны быть проверены. Расчёты статической нагрузки и ресурса см. на стр. SL-2 и SL-7 Полную информацию по продуктам Вы сможете найти на www.rollon.com
* Большая длина перемещения может быть получена путем стыковки актуаторов.

Типоразмер		рузоподъе на каретку [H]			атический на каретку [Н·м]		Макс. рабочая	Макс. ускорение	Повторяемость	Максимальный	
	F _x	F _y	F _z	M _x	M _y	M _z	скорость [м/с]	[M/C ²]	[мм]	ход	
50-65-80- 110	4440	79000	79000	1180	7110	7110	5	50	± 0,05	6000*	P L S
100-130- 160-220	8510	158000	158000	13588	17696	17696	5	50	± 0,05	6000*	
65-130-160	5957	86800	86800	6770	17577	17577	5	50	± 0,05	2500	
50-80-110	4440	92300	110760	1110	9968	8307	5	50	± 0,05	6000*	C R S
30-50-80- 100	4440	87240	87240	1000	5527	5527	4	50	± 0,05	6000*	S S
120-160-220	8880	237000	237000	20145	30810	30810	4	50	± 0,05	6000*	
50-65-80	2250	51260	51260	520	3742	3742	4	50	± 0,05	2000	
60-80-100	4070	43400	43400	570	4297	4297	5	50	± 0,05	6000*	E S
40-55-75- 100	1000	25000	17400	800,4	24917	15752	9	20	± 0,05	5700*	U S
90-110-145	27000	86800	86800	3776	2855	2855	2		± 0,005	1500	P S
100-155- 225-310	58300	230580	274500	30195	26627	22366	2,5		± 0,005	3000	
60-80- 110-140	58300	48400	48400	2251	3049	3049	2,5		± 0,01	4000	
40-60-80	12462	50764	50764	1507	622	622	1,48		± 0,003	810	

Серия "ЕСО"

Описание актуаторов серии "ЕСО"

Рис. 1

В серию "Eco System" входят линейные актуаторы, имеющие в своей основе экструдированный алюминиевый профиль. В качестве привода используется армированный сталью зубчатый полиуретановый ремень с метрическим зубом.

- Актуаторы предлагаются в трёх стандартных типоразмерах:
 60, 80 и 100 мм.
- Существуют модификации с системами рециркуляции шариков или с роликовыми каретками.
- Облегчённый корпус и алюминиевые каретки позволили снизить вес конструкции.
- Высокая скорость перемещений.

Актуаторы серии "Есо System" поставляются в двух модификациях, различающихся механизмами перемещения:

"Eco System - SP"

С установленной внутри профиля не требующей технического обслуживания линейной направляющей с системой рециркуляции шариков.

"Eco System - CI"

С четырьмя роликами, имеющими наружный профиль типа "готическая арка" и обкатывающимися по размещённым внутри профиля направляющим из закалённой стали.

Компоненты

Корпуса из экструдированного профиля

Корпуса актуаторов линейного перемещения серии "ЕСО" компании "Rollon" выполнены из анодированного алюминиевого профиля, изготовленного методом экструзии, в сотрудничестве с компанией, являющейся мировым лидером в данной области. Такой подход позволил придать изделиям оптимальное сочетание механической прочности и малой собственной массы. В конструкции используется алюминиевый сплав "6060", физико-химические свойства которого приведены ниже. Допуски на размеры соответствуют стандарту "EN 755-9".

Приводной ремень

В актуаторах серии "Rollon ECO" используются полиуретановые приводные ремни со стальным армированием и профилем типа "AT". Ремни такого типа оптимально пригодны для использования в подобных актуаторах благодаря таким своим характеристикам, как высокая нагрузочная способность, компактность и малошумность. В сочетании с беззазорным приводом ремня такое решение позволяет

обеспечить плавность хода каретки в том числе и в условиях частой смены направления её перемещения. Оптимизация реализуемого в конкретных моделях соотношения максимальной ширины приводного ремня и размеров корпуса актуатора позволила обеспечить следующие эксплуатационные характеристики:

- Высокая скорость перемещений
- Малошумность
- Малая интенсивность износа

Приводной ремень проходит сквозь специальные прорези в экструдированном алюминиевом корпусе актуатора, за счёт чего обеспечивается дополнительная защита внутренних компонентов актуатора.

Каретка

Каретки актуаторов "Rollon ECO" линейного перемещения целиком выполнены из анодированного алюминия. В любых модификациях актуаторов могут использоваться каретки двух различных длин.

Характеристики используемого алюминиевого сплава: "AL 6060"

Химический состав [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Примеси
Остаток	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15
							T-6- 4

Табл. 1

Физические характеристики

Плотность	Коэффициент упругости	Коэффициент теплового расширения (20°-100°C)	Теплопроводность (20°C)	Удельная теплоёмкость (0°-100°C)	Сопротивление	Точка плавления
КГ	кН	10-6	Вт	Дж		
					Ω . M . 10^{-9}	°C
ДМ ³	MM^2	K	м.К	кг . К		
2,7	69	23	200	880-900	33	600-655

Табл. 2

Механические характеристики

Rm	Rp (02)	А	НВ
<u>Н</u> мм²	H —	%	_
MM^2	MM^2		
205	165	10	60-80

Система линейного перемещения

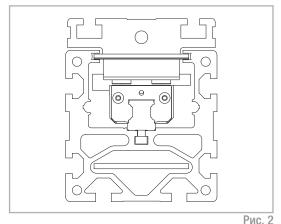
Описываемая серия актуаторов линейного перемещения была разработана для эксплуатации в условиях максимальных ускорений и пределах соответствующих параметров грузоподъёмности и скорости перемещений. В серию входят актуаторы двух основных модификаций:

Актуаторы "ECO...SP" с профильными направляющими

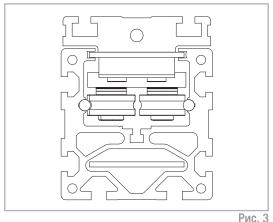
- В специально предусмотренном для этой цели внутри корпуса актуатора продольном пазу надёжно установлена профильная направляющая высокой грузоподъёмности.
- Каретка установлена на двух шариковых блоках с преднатягом.
- Наличие двух шариковых блоков позволяет каретке выдерживать разнонаправленную нагрузку по всем основным направлениям.
- Каждый из двух шариковых блоков имеет уплотнения с обоих концов; при необходимости эксплуатации актуатора в условиях повышенной запылённости в конструкцию может добавляться дополнительный торцевой скребок.
- В каретках данной серии актуаторов используются профильные направляющие с блоками, оснащенными шариковым сепаратором, предотвращающим контакт шариков между собой.
- В передней части подшипниковых блоков предусмотрены резервуары карманного типа для смазочных материалов. Такая конструкция обеспечивает поступление из них смазочных материалов в расчётном количестве, достаточном для обеспечения длительных межсервисных интервалов.

Актуаторы "ECO...CI" с расположенными внутри корпуса роликовыми направляющими с профилем типа «готическая арка».

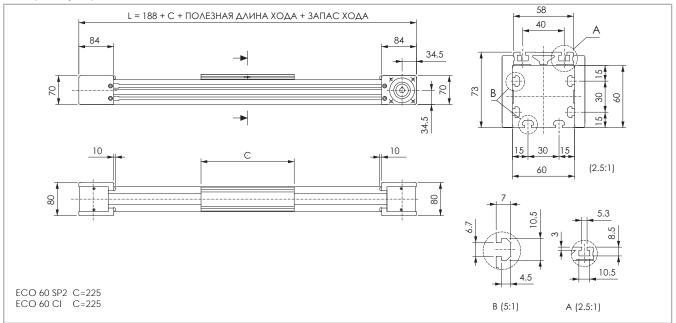
- Внутри алюминиевого корпуса надёжно установлены две направляющие из закалённой стали (твёрдость 58/60 по Роквеллу, допуски по классу "h6").
- Каретка перемещается по двум стальным стержням с помощью четырёх роликов, каждый из которых имеет профиль дорожки качения типа "готическая арка".
- Ролики установлены на стальных концентричных и эксцентриковых осях, что позволяет изменять преднатяг.
- Для обеспечения чистоты направляющих и их смазывания, вблизи обоих торцов каретки предусмотрено четыре пропитанных смазочным материалом фетровых уплотнения и соответствующее количество заполненных смазочным материалом полостей.
- Предусмотрена поддержка проходящего внутри профиля приводного ремня по всей длине - такой подход позволяет не только избежать провисания ремня, но и обеспечить дополнительную защиту линейной направляющей.


Особенности описываемой системы линейного перемещения:

- Высокие скорости и ускорения
- Высокая грузоподъёмность
- Высокая устойчивость к изгибу
- Малые потери на трение
- Длительный срок службы
- Практически отсутствует необходимость в регулярном техническом обслуживании (в зависимости от специфики конкретного применения)
- Малошумность
- Способность обеспечения больших длин хода


Особенности описываемой системы линейного перемещения:

- Высокая точность позиционирования
- Малошумность
- Практически отсутствует необходимость в регулярном техническом обслуживании (в зависимости от специфики конкретного применения)



"ECO CI"

"ECO 60 SP" - "ECO 60 CI"

Размеры актуаторов "ECO 60 SP2" - "ECO 60 CI"

^{*} Данные по величине запаса хода предоставляются под запрос, причём эта величина может быть различной, в зависимости от специфики решаемых Заказчиком задач.

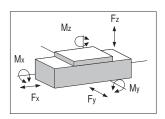
Рис. 4

Технические характеристики

	Τν	1П
	"ECO 60 SP2"	"ECO 60 CI"
Максимальная полезная длина хода [мм]	3700	6000
Максимальная стабильность позиционирования [мм]*1	± 0,05	± 0,05
Максимальная скорость [м/с]	4,0	1,5
Максимальное ускорение [м/c²]	50	1,5
Тип приводного ремня	"32 AT 5"	"32 AT 5"
Тип шкива	"Z 28"	"Z 28"
Диаметр шкива [мм]	44,56	44,56
Длина хода каретки на один оборот шкива [мм]	140	140
Масса каретки [кг]	0,51	0,80
Вес при нулевом ходе [кг]	3,5	3,2
Масса на 100 мм полезного хода [кг]	0,45	0,68
Усилие страгивания [Нм]	0,24	0,32
Момент инерции шкивов [г мм²]	163000	163000
*1) Фактическая стабильность позиционирования зависит в том числе и	от типа трансмисси	и Табл. 4

Грузоподъёмность актуаторов "ECO 60 SP2" - "ECO 60 CI"

INIOINICHTDI	инерции	antown	лисвої о	KUPII	yua

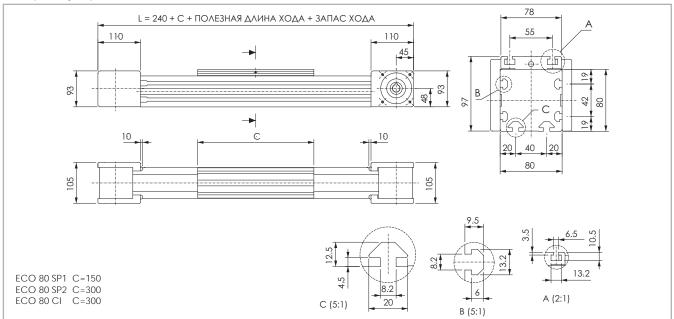

Тип	l x [10 ⁷ мм⁴]	l [10 ⁷ мм⁴]	[[10 ⁷ MM ⁴]
"ECO 60"	0,037	0,054	0,093
			Табл. 5

Приводной ремень

Приводной ремень изготовлен из износостойкого полиуретанового материала, для увеличения устойчивости к растяжению армированного стальным кордом.

Тип	Тип приводного ремня	Ширина приводного ремня [мм]	Масса кг/м
"ECO 60"	"32 AT 5"	32	0,105
	/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0 1 100	Табл. 6

Длина ремня (мм) $SP2/CI = 2 \times L - 166$



Тип	F [H	: X 1]	F [J	: -Ŋ	F [I	z H]	[H	Л _х м]	M [H	1 _у м]	(H	Л _z м]
	стат.	дин.	стат.	дин.	стат.	дин.	стат.	дин.	стат.	дин.	стат.	дин.
"ECO 60 SP2"	1360	1020	6930	4616	6930	4616	43	29	319	212	319	212
"ECO 60 CI"	1360	1020	1480	2540	910	1410	20	30	50	78	82	140

Расчёты статической нагрузки и ресурса см. на стр. SL-2 и SL-3

ECO 80 SP2" - "ECO 80 SP1" - "ECO 80 CI"

Размеры актуаторов "ECO 80 SP2" - "ECO 80 SP1" - "ECO 80 CI""

^{*} Данные по величине запаса хода предоставляются под запрос, причём эта величина может быть различной, в зависимости от специфики решаемых Заказчиком задач.

Рис. 5

Технические характеристики

тохни тоокие характориотики			
		Тип	
	"ECO 80 SP2"	"ECO 80 SP1"	"ECO 80 CI"
Максимальная полезная длина хода [мм]	6000	6000	6000
Максимальная стабильность позиционирования [мм]*1	± 0,05	± 0,05	± 0,05
Максимальная скорость [м/с]	5,0	5,0	1,5
Максимальное ускорение [м/c²]	50	50	1,5
Тип приводного ремня	"50 AT 5"	"50 AT 5"	"50 AT 5"
Тип шкива	"Z 37"	"Z 37"	"Z 37"
Диаметр шкива [мм]	58,89	58,89	58,89
Длина хода каретки на один оборот шкива [мм]	185	185	185
Масса каретки [кг]	1,6	0,9	2,1
Вес при нулевом ходе [кг]	7,7	5,9	8,2
Масса на 100 мм полезного хода [кг]	0,8	0,8	0,65
Усилие страгивания [Нм]	0,75	0,75	0,75
Момент инерции шкивов [г мм²]	706000	706000	706000
*1) Фактическая стабильность позиционирования зависит в том чи	исле и от типа т	рансмиссии	Табл. 8

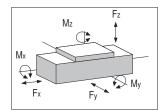
Грузоподъёмность актуаторов "ECO 80 SP2" - "ECO 80 SP1" - "ECO 80 CI"

Моменты инерции алюминиевого корпуса

Тип	I _х	I _у	
	[10 ⁷ мм⁴]	[10 ⁷ мм⁴]	[10 ⁷ mm⁴]
"ECO 80"	0,117	0,173	0,280

Табл. 9

Приводной ремень

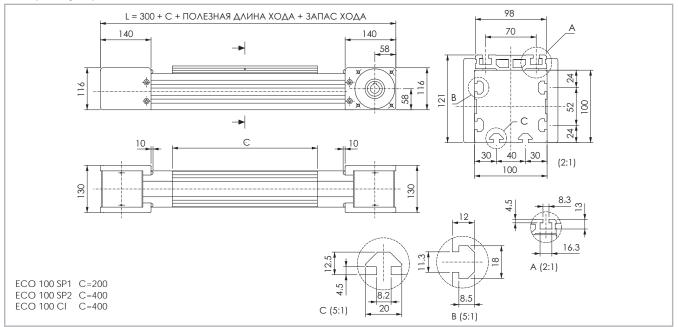

Приводной ремень изготовлен из износостойкого полиуретанового материала, для увеличения устойчивости к растяжению армированного стальным кордом.

Тип	Тип приводного ремня	Ширина приводного ремня [мм]	Масса кг/м
"ECO 80"	"50 AT 5"	50	0,164

Табл. 10

Длина ремня (мм) SP2/CI = $2 \times L - 240$

SP1= $2 \times L - 90$



Тип	F _x [H]		F _y	[H]	F _z	[H]	M _x [[Нм]	М _у [Нм]	M _z [Нм]
	стат.	дин.	стат.	дин.	стат.	дин.	стат.	дин.	стат.	дин.	стат.	дин.
"ECO 80 SP2"	2120	1590	24200	14560	24200	14560	240	138	1706	1026	1706	1026
"ECO 80 SP1"	2120	1590	12100	7280	12100	7280	120	69	66	37	66	37
"ECO 80 CI"	2120	1590	3800	7340	2470	4080	68	110	210	340	320	610

Расчёты статической нагрузки и ресурса см. на стр. SL-2 и SL-3

ECO 100 SP2" - "ECO 100 SP1" - "ECO 100 CI"

Размеры актуаторов "ECO 100 SP2" - "ECO 100 SP1" - "ECO 100 CI""

^{*} Данные по величине запаса хода предоставляются под запрос, причём эта величина может быть различной, в зависимости от специфики решаемых Заказчиком задач.

Рис. 6

Технические характеристики

		Тип	
	"ECO 100 SP2"	"ECO 100 SP1"	"ECO 100 CI"
Максимальная полезная длина хода [мм]	6000	6000	6000
Максимальная стабильность позиционирования [мм]*1	± 0,05	± 0,05	± 0,05
Максимальная скорость [м/с]	5,0	5,0	1,5
Максимальное ускорение [м/c²]	50	50	1,5
Тип приводного ремня	"50 AT 10"	"50 AT 10"	"50 AT 10"
Тип шкива	"Z 24"	"Z 24"	"Z 24"
Диаметр шкива [мм]	76,39	76,39	76,39
Длина хода каретки на один оборот шкива [мм]	240	240	240
Масса каретки [кг]	2,9	1,5	3,3
Вес при нулевом ходе [кг]	16,7	12,5	17,1
Масса на 100 мм полезного хода [кг]	1,3	1,3	1,1
Усилие страгивания [Нм]	1,90	1,35	1,35
Момент инерции шкивов [г мм²] *1) Фактическая стабильность позиционирования зависит в том чи	2070000 исле и от типа т	2070000	2070000 Табл. 12

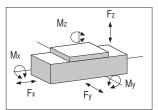
Грузоподъёмность актуаторов "ECO 80 SP2" - "ECO 80 SP1" - "ECO 80 CI"

Расчёты статической нагрузки и ресурса см. на стр. SL-2 и SL-3

Моменты инерции	алюминиевого корпуса

Тип	I _х	l _y	I
	[10 ⁷ мм⁴]	[10 ⁷ мм⁴]	[10 ⁷ MM⁴]
ECO 100	0,342	0,439	0,781

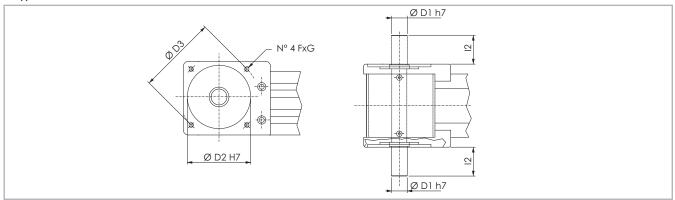
Табл. 13


Приводной ремень

Приводной ремень изготовлен из износостойкого полиуретанового материала, для увеличения устойчивости к растяжению армированного стальным кордом.

Тип	Тип приводного ремня	Ширина приводного ремня [мм]	Масса кг/м
ECO 100	"50 AT 10"	50	0,290

Табл. 14


Длина ремня (мм) SP1 =
$$2 \times L - 112$$

SP2/CI = $2 \times L - 312$

Тип	F _x [H]		F_{y}	[H]	F _z	[H]	M _x [[Нм]	M _y [Нм]	M _z [Нм]
	стат.	дин.	стат.	дин.	стат.	дин.	стат.	дин.	стат.	дин.	стат.	дин.
"ECO 100 SP2"	4410	3310	43400	34800	43400	34800	570	440	4297	3445	4297	3445
"ECO 100 SP1"	4410	3310	21700	17400	21700	17400	285	220	155	120	155	120
"ECO 100 CI"	4410	3310	8500	17000	4740	8700	160	300	520	950	930	1850

🔽 Гладкие валы

Гладкие валы типа "AS"

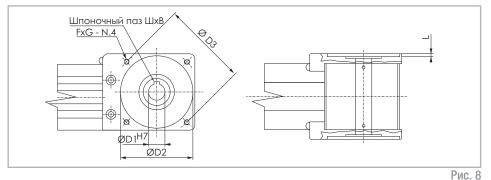
В зависимости от варианта исполнения гладкий вал может выступать наружу относительно приводного блока влево и/или вправо.

Рис. 7

Размеры изделий в мм

Совместимые актуаторы	Тип вала	D1	D2	D3	12	F	G	Код приводного блока "AS", левосто- ронний вариант	Код приводного бло- ка "AS", правосто- ронний вариант
"ECO 60"	AS 12	12	60	75	25	M5	12	2G	21
"ECO 80"	AS 20	20	80	100	36,5	M6	16	2G	21
"ECO 100"	AS 25	25	110	130	50	M8	20	2G	21

Табл. 16


Полые валы

Передача крутящего момента на приводной шкив

Крутящий момент передаётся на приводной шкив полым валом со шпоночным пазом. У такой системы, при её эксплуатации со знакопеременной нагрузкой и в условиях высоких ускорений, могут проявляться люфты.

Для получения дополнительной информации просьба связываться непосредственно с компанией "Rollon".

Полый вал

Для обеспечения совместимости со стандартными, рекомендованными компанией "Rollon" редукторами необходим соединительный фланец, поставляемый в качестве опции.

Для получения дополнительной ин-

Для получения дополнительной информации просьба связываться непосредственно с компанией "Rollon".

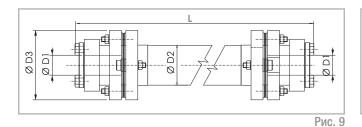

Изделие	Тип вала	D1	D2	D3	L	Шпоночный паз ШхВ	F	G	Код приводного блока
"ECO 60"	AC 12	12H7	60J6	75	3,5	4 x 4	M5	12	2A
"ECO 80"	AC 19	19H7	80J6	100	3,5	6 x 6	M6	16	2A
"ECO 100"	AC 25	25H7	110J6	130	4,5	8 x 7	M8	20	2A

Табл. 17

Параллельный монтаж актуаторов

Комплект для синхронизации работы актуаторов, установленных параллельно.

Комплект необходим для синхронизации работы параллельно установленных актуаторов и представляет собой набор соединительных пластин и полый алюминиевый вал.

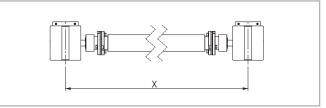
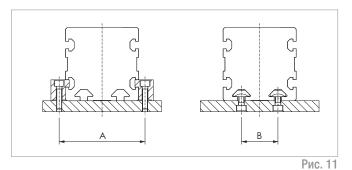


Рис. 10

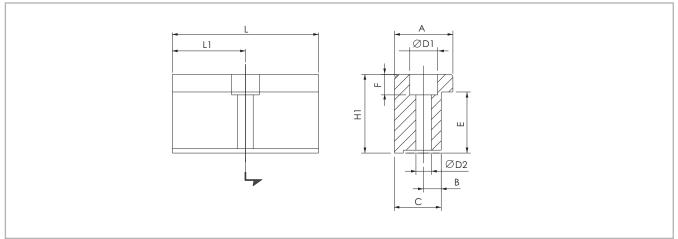
Совместимые актуаторы	Тип вала	D1	D2	D3	Код	Формула расчёта длины
"ECO 60"	AP 12	12	25	45	GK12P1A	L= X-88 [MM]
"ECO 80"	AP 20	20	40	69,5	GK20P1A	L= X-116 [мм]
"ECO 100"	AP 25	25	70	99	GK25P1A	L= X-165 [мм]


Табл. 18

Аксессуары

Крепление скобами или Т-образными гайками

В актуаторах серии "Rollon ECO" используются направляющие, способные воспринимать нагрузки, воздействующие в любых направлениях. Соответственно, актуаторы могут монтироваться в любом положении и любой ориентации.


Для крепления актуаторов рекомендуется использовать показанные ниже предусмотренные в алюминиевых корпусах крепёжные пазы.

Изделие	А (мм)	В (мм)
"ECO 60"	72	30
"ECO 80"	94	40
"ECO 100"	120	40

Табл. 19

Крепёжные скобы

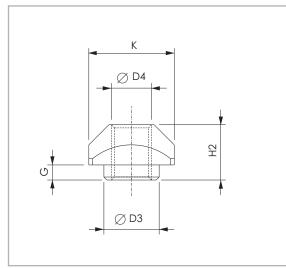

Деталь из анодированного алюминия, предназначенная для крепления актуатора за предусмотренные в его корпусе боковые пазы.

Рис. 12

Изделие	Α	H1	В	С	E	F	D1	D2	L	Lt	Код
"ECO 60"	20	17,5	6	16	11,5	6	9,4	5,3	50	25	1001490
"ECO 80"	20	20,7	7	16	14,7	7	11	6,4	50	25	1001491
"ECO 100"	36,5	28,5	10	31	18,5	11,5	16,5	10,5	100	50	1001233

Табл. 20

T-nuts

В пазах корпуса следует использовать стальные гайки. Рис. 13

Размеры изделий в мм

Изделие		D3	D4	G	H2	K	Код
ECO 60	L	6,7	M5	2,3	6,5	10	1000627
ECO 60	С	-	M5	-	5	10	1000620
ECO 80	L	8	M6	3,3	8,3	13	1000043
ECO 80	С	-	M6	-	5,8	13	1000910
ECO 80	I	-	M6	-	6,5	17	1000911
ECO 100	L	11	M8	3	11	17	1000932
ECO 100	C	-	M8	-	8	16	1000942
ECO 100	I	-	M8	-	6,5	17	1000943

L =бок. - C =каретка - I =ниж.

Бесконтактные датчики

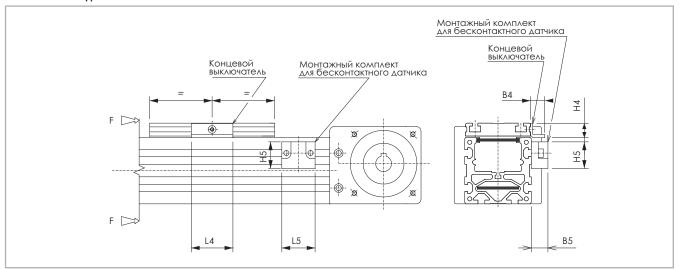
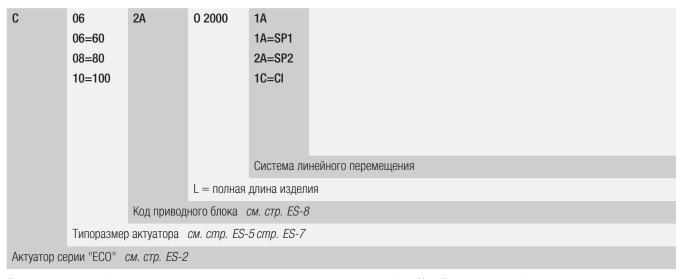


Рис. 14

Монтажный комплект для бесконтактного датчика

Деталь из алюминия, окрашенная в красный цвет и комплектующаяся Т-образными гайками для крепления в пазы, предусмотренные в корпусе актуатора.

Концевой выключатель


L-образная деталь из оцинкованной стали, устанавливаемая на каретку и регистрируемая бесконтактным датчиком.

Изделие	В4	B5	L4	L5	H4	H5	Для беск, датчика	Концевой выключатель Код	Код монтажного комплекта для бесконтактного датчика
"ECO 60"	9,5	14	25	29	12	22,5	Ø 8	G000268	G000213
"ECO 80"	17,2	20	50	40	17	32	Ø 12	G000267	G000209
"ECO 100"	17,2	20	50	40	17	32	Ø 12	G000267	G000210

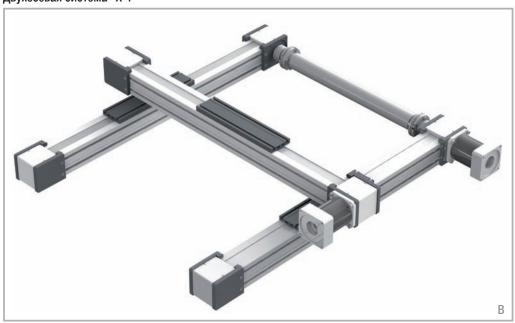
Табл. 22

Код заказа // 🗸

Идентификационный код систем "ЕСО" линейного перемещения

Для создания идентификационных кодов для линии актуаторов можно посетить: http://configureactuator.rollon.com

Многоосевые системы


Ранее заказчикам приходилось самостоятельно проектировать и изготавливать элементы, необходимые для объединения актуаторов в многоосевые системы перемещения. Теперь же компанией "Rollon" предлагается комплект крепежа, включая скобы и соединительные пластины, необходимого для создания таких многоосевых систем. В дополнение к стандартным крепёжным элементам, компания "Rollon" предлагает и крепёж для решения ряда специальных задач.

Осевая система "ЕСО"

А - линейные актуаторы: Ось "X" 1 ECO 80

Двухосевая система "Х-Ү"

В - линейные актуаторы: Ось «Х»: 2 ЕСО 80 - ось "Y" 1 ЕСО 80 **Соединительные детали:** 2 комплекта крепёжных скоб для крепления актуатора "ЕСО 80" (перемещение по оси "Y") к кареткам актуаторов "ЕСО 80" (перемещение по оси "X").

Статическая нагрузка и долговечность Plus-Clean Room-Smart-Eco-Precision

Статическая нагрузка

При расчётах статических нагрузок используются следующие переменные: F, (полезная нагрузка, воздействующая на каретку в радиальном направлении), $F_{_{7}}$ (полезная нагрузка, воздействующая на каретку в осевом направлении), а также значения М,, М, и М, максимально допустимых моментов, воздействующих на каретку по одноимённым осям. Превышение максимально допустимых нагрузок, соответственно моментов, отрицательно скажется на эксплуатационных характеристиках системы. В расчётах статической нагрузки используется дополнительная переменная " S_0 ", обозначающая коэффициент запаса прочности и позволяющая более гибко учитывать в расчётах специфику тех условий, в которых планируется эксплуатировать изделие.

Коэффициент " S_0 " запаса прочности

Условия предполагаемой эксплуатации: ударная нагрузка отсутствует, вибрация отсутствует, случаи резкого изменения направления перемещения каретки на противоположное редки; качество и точность монтажа высокие, упругие деформации отсутствуют, эксплуатация осуществляется в условиях минимума внешних загрязнений	2 - 3
Нормальные условия монтажа и эксплуатации	3 - 5
Ожидается эксплуатация в условиях вибраций и ударных нагрузок, с высокой частотой изменений направления перемещения системы на противоположное, а также в условиях существенных упругих деформаций	5 - 7

Отношение фактической нагрузки к максимально допустимой не должно превышать величины, обратной по отношению к используемому коэффициенту "S₀" запаса прочности.

$$\frac{P_{fy}}{F_{v}} \leq \frac{1}{S_{0}} \qquad \frac{P_{fz}}{F_{z}} \leq \frac{1}{S_{0}}$$

$$\frac{P_{fz}}{F_{z}} \leq \frac{1}{S_{0}}$$

$$\frac{M_1}{M_x} \le \frac{1}{S_0}$$

$$\frac{M_2}{M_y} \le \frac{1}{S_0}$$

$$\frac{M_3}{M_z} \le \frac{1}{S_0}$$

Рис. 3

Рис. 1

Приведённая выше формула применима к случаям воздействия на каретку единичной нагрузки. В случаях, когда на каретку / систему могут одновременно воздействовать несколько нагрузок, следует убедиться, что выполняется следующее соотношение:

$$\frac{P_{fy}}{F_{y}} + \frac{P_{fz}}{F_{z}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}} \le \frac{1}{S_{0}}$$

 $P_{f^y}=$ действующая (в направлении "у") нагрузка (п) $F_y^y=$ номинальная статическая нагрузка (в направлении "у") (Н) $P_{f^z}^y=$ действующая (в направлении "z") нагрузка (Н)) $P_{f^z}^y=$ номинальная статическая нагрузка (в направлении "z") (Н) $P_{f^z}^y=$ внешние моменты (Нм) $P_{f^z}^y=$ максимально допустимые моменты, воздействующие на систему в различных направлениях (Нм)

В тех случаях, когда есть основания полагать, что усилия, которые будут воздействовать на систему в условиях реальной эксплуатации, были определены с высокой степенью точности и достоверности, коэффициент "S_o" запаса прочности допускается брать приближённым к нижней границе его соответствующего диапазона. Чем существеннее ударные нагрузки и вибрации, которым будет подвергаться система линейного перемещения, тем большим должно быть применяемое в расчётах значение этого коэффициента. Показанием к увеличению применяемого в расчётах значения коэффициента запаса прочности также является предполагаемое воздействие на систему линейного перемещения интенсивных динамических нагрузок. За дополнительной информацией просьба обращаться напрямую в Отдел прикладного проектирования (Application Engineering Department) компании "Rollon".

Коэффициент запаса прочности ремня, используемый в динамических расчётах

	Tierrorisoyemsiri si Armainiri reetaix pae re-tax					
Ударные нагрузки, вибрации	Скорости и ускорения	Ориентация				
Отсутствуют ударные	Низкие	Горизонтальная	1,4			
нагрузки и вибрации	TIVISKVIE	Вертикальная	1,8			
Невысокие ударные	Средние	Горизонтальная	1,7			
нагрузки и вибрации	Оредпие	Вертикальная	2,2			
Сильные ударные	Высокие	Горизонтальная	2,2			
нагрузки и вибрации	DPICOKNE	Вертикальная	3			
			Тобп 1			

Pecypc

Определение расчётного эксплуатационного ресурса

Важным параметром, учитываемым при определении эксплуатационного ресурса, является динамическая грузоподъёмность "С". Эта грузоподъёмность, как правило, определяется и указывается для номинального ресурса изделий в 100 км пробега каретки. Взаимос-

вязь между расчётным эксплуатационным ресурсом, динамической грузоподъёмностью и эквивалентной нагрузкой описывается следующей формулой:

$$L_{km} = 100 \text{ km} \cdot (\frac{Fz\text{-dyn}}{P_{en}} \cdot \frac{1}{f_i})^3$$

 $\mathsf{L}_{\mathsf{km}} = \mathsf{pac}$ чётный эксплуатационный ресурс (км)

Fz-dyn = динамическая грузоподъёмность (H)

Р = полезная, или фактическая, эквивалентная нагрузка (Н)

 $f_{_{i}} =$ коэффициент условий эксплуатации (см. Табл. 2)

Рис. 4

Под эквивалентной нагрузкой " P_{eq} " понимается сумма всех одновременно воздействующих на каретку сил и моментов. В случае, когда все составляющие известны, "P" определяется по следующей формуле:

Для типа "SP"

$$P_{eq} = P_{fy} + P_{fz} + (\frac{M_1}{M_v} + \frac{M_2}{M_v} + \frac{M_3}{M_z}) \cdot F_y$$

Рис. 5

Для типов "CI" и "CE"

$$P_{eq} = P_{fy} + (\frac{P_{fz}}{F_z} + \frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z}) \cdot F_y$$

Рис. 6

Мы исходим из допущения, что постоянно действующие внешние нагрузки / воздействия не меняются с течением времени. Краткосрочные нагрузки, не выходящие за пределы максимальной грузоподъёмности, не оказывают сколь-либо заметного влияния на реальный ресурс изделий, и по этой причине такими краткосрочными нагрузками можно пренебречь.

Коэффициент "f_i" условий эксплуатации

\mathbf{f}_{i}	
ударные нагрузки и вибрации отсутствуют, случаи резкого изменения направления перемещения каретки на противоположное редки; ($a < 5 \text{ м/c}^2$) воздействие загрязнений минимально; скорости перемещения низкие (менее 1 м/с):	1,5 - 2
незначительные вибрации; средние скорости хода; (1-2 м/с), средняя или высокая частота изменений направления перемещения каретки на противоположное (5 м/с² < a < 10 м/с²)	2 - 3
ударные нагрузки и вибрации; высокие (> 2 м/с) скорости хода, высокая частота изменений направления перемещения каретки на противоположное; ($a > 10 \text{ м/c}^2$) высокая загрязнённость, чрезвычайно малые длины хода	> 3

Статическая нагрузка и долговечность "UNILINE"

Статическая нагрузка

При расчётах статических нагрузок используются следующие переменные: С_{пгад} (полезная нагрузка, воздействующая на каретку в радиальном направлении), С полезная нагрузка, воздействующая на каретку в осевом направлении), а также значения М, М, и М, максимально допустимых моментов, воздействующих на каретку по одноимённым осям. Превышение максимально допустимых нагрузок, соответственно моментов, отрицательно скажется на эксплуатационных характеристиках системы. В расчётах статической нагрузки используется дополнительная переменная "S₀", обозначающая коэффициент запаса прочности и позволяющая более гибко учитывать в расчётах специфику тех условий, в которых планируется эксплуатировать изделие.

Коэффициент "S₀" запаса прочности

Условия предполагаемой эксплуатации: ударная нагрузка отсутствует, вибрация отсутствует, случаи резкого изменения направления перемещения каретки на противоположное редки; качество и точность монтажа высокие, упругие деформации отсутствуют, эксплуатация осуществляется в условиях минимума внешних загрязнений	1 - 1,5
Нормальные условия монтажа и эксплуатации	1,5 - 2
Ожидается эксплуатация в условиях вибраций и ударных нагрузок, с высокой частотой изменений направления перемещения системы на противоположное, а также в условиях существенных упругих деформаций	2 - 3,5

Рис. 7

Отношение фактической нагрузки к максимально допустимой не должно превышать величины, обратной по отношению к используемому коэффициенту "S₀" запаса прочности.

$$\frac{P_{0\text{rad}}}{C_{0\text{rad}}} \le \frac{1}{S_0} \qquad \frac{P_{0\text{ax}}}{C_{0\text{av}}} \le \frac{1}{S_0}$$

$$\frac{P_{0ax}}{C_{0ax}} \le \frac{1}{S_0}$$

$$\frac{M_1}{M_x} \leq \frac{1}{S_0}$$

$$\frac{M_2}{M_v} \leq \frac{1}{S_0}$$

$$\frac{M_3}{M_z} \le \frac{1}{S_0}$$

Рис. 8

Приведённая выше формула применима к случаям воздействия на каретку единичной нагрузки. В случаях, когда на каретку / систему

могут одновременно воздействовать несколько нагрузок, следует убедиться, что выполняется следующее соотношение:

$$\frac{-\frac{P_{0rad}}{C_{0rad}}}{C_{0rad}} + \frac{\frac{P_{0ax}}{C_{0ax}}}{C_{0ax}} + \frac{\frac{M_{1}}{M_{x}}}{\frac{M_{x}}{M_{x}}} + \frac{\frac{M_{2}}{M_{y}}}{\frac{M_{y}}{M_{y}}} + \frac{\frac{M_{3}}{M_{z}}}{\frac{M_{z}}{M_{z}}} \le \frac{1}{S_{0}}$$

- = величина полезной нагрузки, воздействующей на систему в радиальном направлении (Н)
- = максимально допустимая величина нагрузки, воздействующей на систему в радиальном направлении (Н)
- = величина полезной нагрузки, воздействующей на систему в осевом направлении (Н)
- = максимально допустимая величина нагрузки, воздействующей на систему в осевом направлении (Н)
- $M_{_{\! 4}},\,M_{_{\! 2}},\,M_{_{\! 3}}=$ внешние моменты (Нм)
- $M_{y}, M_{y}, M_{z} =$ максимально допустимые моменты,

воздействующие на систему в различных направлениях (Нм)

В тех случаях, когда есть основания полагать, что усилия, которые будут воздействовать на систему в условиях реальной эксплуатации, были определены с высокой степенью точности и достоверности, коэффициент "S_o" запаса прочности допускается брать приближённым к нижней границе его соответствующего диапазона. Чем существеннее ударные нагрузки и вибрации, которым будет подвергаться

система линейного перемещения, тем большим должно быть приме-

няемое в расчётах значение этого коэффициента. Показанием к увеличению применяемого в расчётах значения коэффициента запаса прочности также является предполагаемое воздействие на систему линейного перемещения интенсивных динамических нагрузок. За дополнительной информацией просьба обращаться напрямую в Отдел прикладного проектирования (Application Engineering Department) компании "Rollon".

Формулы для выполнения вычислений

Моменты " ${\rm M_y}$ " и " ${\rm M_z}$ " для систем линейного перемещения с удлиненной кареткой

Допустимые нагрузки на систему, соответственно допустимые величины моментов " M_y " и " M_z ", зависят от длины крепёжной пластины каретки. Моменты " M_{zn} " и " M_{yn} ", являющиеся максимально допустимыми для системы линейного перемещения с учётом длины крепёжной пластины её каретки, рассчитываются по следующим формулам:

$$S_n = S_{min} + n \cdot \Delta S$$

$$M_{zn} = (1 + \frac{S_n - S_{min}}{K}) \cdot M_{z min}$$

$$M_{yn} = (1 + \frac{S_n - S_{min}}{K}) \cdot M_{y min}$$

М_{лп} = максимально допустимый момент (Нм)

 ${\rm M_{z\,min}}\ =\ {\rm Muнимальные}\ {\rm 3 Ha}{
m Ye}{
m Hu}{
m M}$

М, = максимально допустимый момент (Нм)

 $M_{_{v \, min}} = M$ инимальные значения (Нм)

S_n = длина крепёжной пластины каретки (мм)

 $S_{\min} = M$ инимальная длина крепёжной пластины каретки (мм)

ΔS = запас по длине, учитываемый при проектировании каретки увеличенной длины

К = постоянная

Рис. 10

Тип	M _{y min}	M _{z min}	S _{min}	ΔS	K
A40L	22	61	240		74
A55L	82	239	310		110
A75L	287	852	440		155
C55L	213	39	310		130
C75L	674	116	440	10	155
E55L	165	239	310		110
E75L	575	852	440		155
ED75L (M _z)	1174	852	440		155
ED75L (M _y)	1174	852	440		270
					Табл 3

Моменты " ${\rm M_y}$ " и " ${\rm M_z}$ " для систем линейного перемещения с двумя каретками

Допустимые нагрузки на систему, соответственно допустимые величины моментов " M_y " и " M_z ", зависят от расстояния между центрами кареток. Моменты " M_{vn} " и " M_{zn} ", являющиеся максимально допусти-

мыми для системы линейного перемещения с учётом расстояний между центрами кареток, рассчитываются по следующим формулам:

$$L_{_{\! n}} = L_{_{\! min}} + \, n \, \cdot \, \Delta L$$

$$M_{_{\boldsymbol{y}}} = (\frac{L_{_{\boldsymbol{n}}}}{L_{_{\boldsymbol{min}}}}) \cdot M_{_{\boldsymbol{y}\,\boldsymbol{min}}}$$

$$M_z = (\frac{L_n}{L_{min}}) \cdot M_{z \, min}$$

 $\mathbf{M}_{_{\mathbf{y}}} \quad = \; \mathbf{m}$ аксимально допустимый момент (Hm)

М, = максимально допустимый момент (Нм)

 $M_{y \, min} \, = \, M$ инимальные значения (HM)

М_{д min} = минимальные значения (Нм)

L₀ = расстояние между центрами кареток (мм)

 $L_{\min} = \text{минимальное значение расстояния между центрами кареток (мм)}$

△L = запас по длине, учитываемый при проектировании

каретки увеличенной длины

Рис. 11

Тип	M _{y min}	M _{z min}	L _{min}	ΔL
A40D	70	193	235	5
A55D	225	652	300	5
A75D	771	2288	416	8
A100D	2851	4950	396	50
C55D	492	90	300	5
C75D	1809	312	416	8
E55D	450	652	300	5
E75D	1543	2288	416	8
ED75D	3619	2288	416	8

Табл. 4

Pecypc

Определение расчётного эксплуатационного ресурса

Важным параметром, учитываемым при определении эксплуатационного ресурса, является динамическая грузоподъёмность "С". Эта грузоподъёмность, как правило, определяется и указывается для номинального ресурса изделий в 100 км пробега каретки. Значения

данного параметра для различных систем линейного перемещения приведены ниже, в Таблице 45. Взаимосвязь между расчётным эксплуатационным ресурсом, динамической грузоподъёмностью и эквивалентной нагрузкой описывается следующей формулой:

$$L_{km} = 100 \text{ km} \cdot (\frac{C}{P} \cdot \frac{f_c}{f_i} \cdot f_h)^3$$

Под эквивалентной нагрузкой "Р" понимается сумма всех одновременно воздействующих на каретку сил и моментов. В случае, когда

_{-km} = расчётный эксплуатационный ресурс (км)

С = динамическая грузоподъёмность (Н)

Р = полезная, или фактическая, эквивалентная нагрузка (Н)

f_i = коэффициент условий эксплуатации (см. Табл. 5)

f_c = коэффициент контакта (см. Табл. 6)

f_ь = коэффициент длины хода (см. Рис. 13)

Рис. 12

$$P = P_{r} + (\frac{P_{a}}{C_{0ax}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}}) \cdot C_{0rad}$$

Рис. 13

Мы исходим из допущения, что постоянно действующие внешние нагрузки / воздействия не меняются с течением времени. Краткосрочные нагрузки, не выходящие за пределы максимальной грузоподъёмности, не оказывают сколь-либо заметного влияния на реальный ресурс изделий, и по этой причине такими краткосрочными нагрузками можно пренебречь.

Коэффициент "f_i" условий эксплуатации

f _i	
Ударные нагрузки и вибрации отсутствуют, случаи резкого изменения направления перемещения каретки на противоположное редки, воздействие загрязнений минимально; скорости перемещения низкие (менее 1 м/с)	1 - 1,5
Незначительные вибрации; средние скорости хода (1 - 2,5 м/с), средняя или высокая частота изменений направления перемещения каретки на противоположное	1,5 - 2
Ожидается эксплуатация в условиях вибраций и ударных нагрузок, на высоких (свыше 2,5 м/с) скоростях, и с высокой частотой изменений направления перемещения каретки на противоположное; загрязнённость по месту предполагаемой эксплуатации чрезвычайно высока	2 - 3,5
	Табл. 5

Коэффициент "f_c" контакта

f _e	
Стандартная каретка	1
Удлиненная каретка	0,8
Две каретки	0,8
	Табл 6

Коэффициент «f_h» длины хода

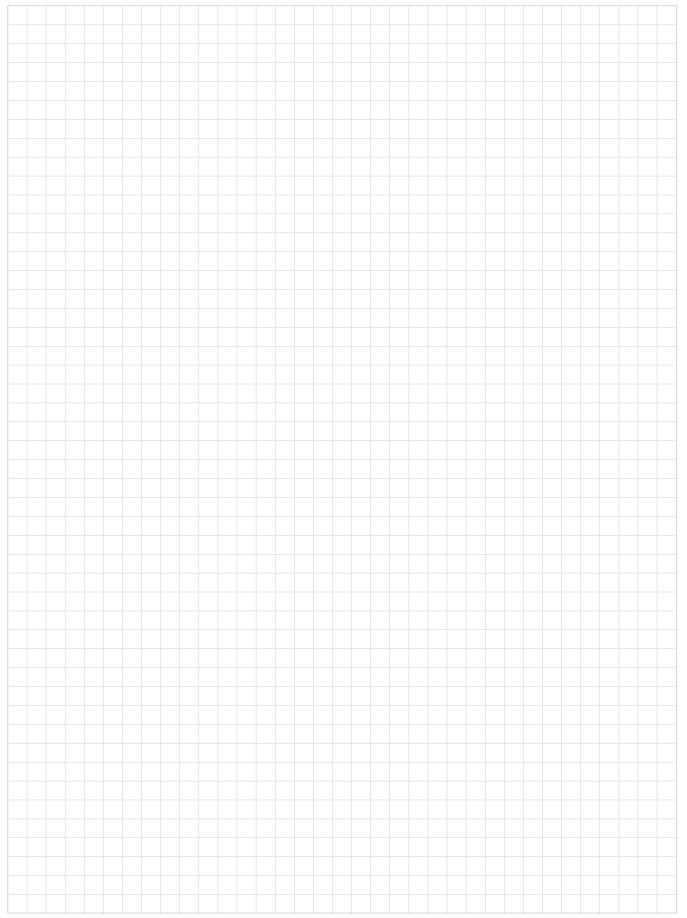
Коэффициент " f_n " длины хода позволяет учесть в расчётах дополнительную нагрузку направляющих и роликов, возникающих при выполнении каретками, при том же суммарном пробеге, большего количества ходов меньшей единичной длины. Значения коэффициента определяются по приведённой ниже диаграмме (причём для длин хода, превышающих 1 метр, значение данного коэффициента равно единице):

Рис. 14

Определение вращающего момента двигателя

Момент C_m , который должен обеспечиваться приводным блоком актуатора, вычисляется по следующей формуле:

$$C_m = C_v + (F \cdot \frac{D_p}{2})$$

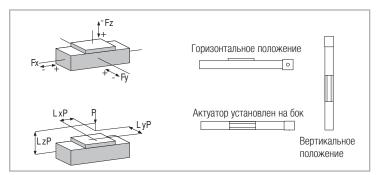

С_т = развиваемый двигателем момент (Нм)

С, = Момент страгивания (Нм)

F = сила, действующая на зубчатый ремень (H)

D₂ = диаметр шкива каретки (м)

Для заметок / 🗸



Опросный лист 🗸 🧸

Общая информация:	Дата: № запроса:
Адрес:	Контактные лица:
Компания:	Дата:
Телефон:	Факс:

Технические характеристики:

				Ось «Х»	Ось «Y»	Ось «Z»
Длина полезного хода (включая запас хода)		S	[MM]			
Перемещаемая масса		Р	[КГ]			
Местоположение массы	Направление "Х"	LxP	[MM]			
	Направление "Y"	LyP	[MM]			
	Направление "Z"	LzP	[MM]			
Дополнительное усилие	Направление"+/-"	Fx (Fy, Fz)	[H]			
Место приложения усилия	Направление "Х"	Lx Fx (Fy, Fz)	[MM]			
	Направление "Y"	Ly Fx (Fy, Fz)	[MM]			
	Направление "Z"	Lz Fx (Fy, Fz)	[MM]			
Монтажное положение (горизонтальное / вертикальное / наклонное)						
Максимальная скорость перемещения		V	[M/C]			
Максимальное ускорение		a	[M/C ²]			
Стабильность позиционирования		Δs	[MM]			
Требуемый срок службы		L	[4]			

Внимание: к запросу просьба прикладывать чертежи или эскизы, а также описание рабочих циклов.

Подразделения:

ROLLON GmbH - GERMANY

Bonner Strasse 317-319 D-40589 Düsseldorf Phone: (+49) 211 95 747 0 www.rollon.de - info@rollon.de

ROLLON S.A.R.L. - Франция

Les Jardins d'Eole, 2 allée des Séquoias F-69760 Limonest Phone: (+33) (0) 4 74 71 93 30 www.rollon.fr - infocom@rollon.fr

ROLLON Ltd - Китай

2/F Central Plaza, No. 227 North Huang Pi Road, China, Shanghai, 200003 Phone: (+86) 021 2316 5336 www.rollon.cn.com - info@rollon.cn.com

ROLLON B.V. - Нидерланды

Ringbaan Zuid 8 6905 DB Zevenaar Phone: (+31) 316 581 999 www.rollon.nl - info@rollon.nl

ROLLON Corporation - США

101 Bilby Road. Suite B Hackettstown, NJ 07840 Phone: (+1) 973 300 5492 www.rolloncorp.com - info@rolloncorp.com

ROLLON India Pvt. Ltd. - Индия

1st floor, Regus Gem Business Centre, 26/1 Hosur Road, Bommanahalli, Bangalore 560068 Phone: (+91) 80 67027066 www.rollonindia.in - info@rollonindia.in

Представительский офис:

117105, Москва, Варшавское шоссе, д. 17, стр. 1, офис 207. Phone: +7 (495) 508-10-70 www.rollon.ru - info@rollon.ru

ROLLON Ltd - UK

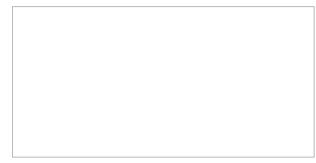
The Works 6 West Street Olney
Buckinghamshire, United Kingdom, MK46 5 HR
Phone: +44 (0) 1234964024
www.rollon.uk.com - info@rollon.uk.com

Региональный менеджер:

ROLLON - SOUTH AMERICA

R. Joaquim Floriano, 397, 2o. andar Itaim Bibi - 04534-011, São Paulo, BRASIL Phone: +55 (11) 3198 3645

www.rollonbrasil.com.br - info@rollonbrasil.com


Приглашаем ознакомиться с полной гаммой продуктов

С полным перечнем партнеров Вы сможете ознакомится на www.rollon.com

Дистрибьютор

