

Our **tecline linear system** range is suitable for the handling of loads from 10 up to 1000 kg, by manufaturing **one or more axis systems** according to the customer **requirements**.

Our main application fields are: **robotics**, **palletization**, production **line**, **logistics** and **manufacturing machines** with Cartesian axis movements.

Our products stand out for their:

- easy and quick assembly
- high quality and competitive performances (profiles up to 12 m)
- reduced and simplified maintenance
- wide range of integrated solutions
- possibility of customised solutions
- **constant** technical **support** and CAD drawings available

Our Tecline linears strong points are:

- Solid beams obtained from aluminium alloy extruded profiles
- High-performance aluminium casting alloy plate and preset for tool assembly
- Adapting plate suitable for any commercial available gearboxes
- Fixed and oscillating roller slides, which can be adjusted through an eccentric bushing
- Without play and sealed rollers with a "for life" lubricating system
- Induction hardened and machined strong V-shaped steel guide rails
- Adjustable limit stops provided with rubber buffers
- Wide range of accessories for 3 or more axis linears

Linear systems with rack drive and components

INTRODUCTION

Construction characteristics	TL-:
Instructions for correct assembly	TL-
Accuracy - Lubrication	TL-
Standard assembly solutions	TL-
Sizing template	TL-
Technical data sheet	TL-
Preliminary selection table (1-2-3 axes)	TL-
Special applications with standard modules	TL-
Assembly positions and load direction	TL-1
Complete order code setting	TL-1

TL-12

PROFILES

SINGLE AXES

	PAR 1 - PAS 1	(180)	TL-16
52	PAR 2 - PASM 2	(170)	TL-18
21	PAR 3 - PASM 3	(200)	TL-20
× .	PAR 4 - PASM 4	(200)	TL-22
	PAR 5 - PASM 5	(220)	TL-24
	PAR 6 - PASM 6	(280)	TL-26
	PAR 8 - PASM 8	(280)	TL-28
	PAR10 - PASM 10	(360)	TL-30

DOUBLE AXES

	PAR 1/05 - PAS 1/05	(180/90)	TL-32
0	PAR 2/1 - PASM 2/1	(170/90)	TL-34
H.	PAR 3/1 - PASM 3/1	(200/100)	TL-36
1	PAR 4/1 - PASM 4/1	(200/100)	TL-38
	PAR 5/2 - PASM 5/2	(220/170)	TL-40
-	PAR 6/2 - PASM 6/2	(280/200)	TL-42
1.1.1	PAR 6/4 - PASM 6/4	(280/200)	TL-44
	PAR 8/3 - PASM 8/3	(280/200)	TL-46
	PAR 8/6 - PASM 8/6	(280/220)	TL-48
	PAR 10/6 - PASM 10/6	(360/220)	TL-50
	PAR 10/8 - PASM 10/8	(360/280)	TL-52

COMPONENTS

STEEL V-SH	APED GUIDE RAILS	TL-54
RACKS		TL-56
Ad	justing plates for racks	TL-57
PINION GEA	RS	TL-57
Programmab	le Automatic Rack Lubrication System	TL-58
Та	ble for selecting maximum operating torque	TL-58
CONNECTIO	N SHAFTS	TL-59
ROLLERS FO	OR V-SHAPED GUIDE RAILS 28.6X11 AND 35X16	TL-60
ROLLER SLI	DES	TL-61
As	sembly Studs	TL-66
Or	der code table for roller slides and pins	TL-68
ANTI-DROP	SYSTEM	TL-69
Lo	ck-pin (shock absorbers)	TL-69

ACCESSORIES

Profile anchor brackets	TL-70
-shaped brackets	TL-71
End caps for profiles	TL-73
Cams and cam-holders for micro-switches	TL-74
hreaded inserts for small and medium profiles	TL-75
hreaded inserts for load-bearing profiles	TL-76
ndex	TL-78

This document replaces all previous editions. Due to the constant progress of our research we reserve the right to modify drawings or features without notice. No part of this catalogue may be reproduced without written permission of the copyright owner. All rights reserved. This catalogue has been accurately checked before publishing. However, we disclaim all responsibility in case of errors and omissions.

Construction characteristics

Multiple-axis linear modules with rack drive

TECLINE linear systems are designed for ROBOTS with one, two or three CARTESIAN AXES and comprise Rollon linear modules with rack drive, in different sizes depending on the load to be translated. Modules with rack drive are suitable for transfer and positioning systems with an extremely low repeatability error and/or for dynamic performance and heavy loads.

They can be equipped / supplied with gearboxes.

Whatever the application, the configuration can be adapted using the complete order code, within an extensive range of components (energy-chains, guides, micro-switches, lubrication units, etc.) and accessories. Our technical dept. is available to provide assistance with code setting.

Beams

Manufactured with Rollon s extruded and anodised (*) profiles, made of hardened and tempered aluminium alloy Al Mg Si 0.5, quality F25, Rm 245 N/mm, tolerance according to UNI EN 755-9. Profiles are specifically designed by Rollon to create rigid and light structures, suitable for manufacturing linear transfer machines. The guide and rack housings on modules equipped with ball roller slides (PASM family) are milled.

(*) Valyda and Logyca profiles are anodised up to 12 m. Pratyca and Solyda are anodised upon request

Modules can be supplied with head-pieced beams, upon request

Plates

Manufactured with flattened extra-fine rolled sections made of high-performance casting alloy (tensile strength, Rm = 290 MPa, HB = 77). Standard plates can be machined according to drawings (code D).

V-shaped guide rails, PAR version

Made of specially treated high-carbon steel. Standard versions include induction hardened rails section 28.6x11, 35x16 and 55x25 (max. length 4000 mm). Joints bevel cut at an angle of 20°.

Roller slides, PAR version

Body in aluminium alloy G AL SI 91 hardened and tempered according to EN AB 46400, rollers with double rows of angular contact ball bearings, backlash-free, long life lubrication: Ø 30, Ø 40, Ø 52, Ø 62 mm rollers. Adjustable tolerance between rollers and guides. Complete with wiper scraper.

Caged ball roller slides and guide rails, PASM version

Systems are supplied with caged ball roller slides. The cage included in the slides has two purposes: it reduces the friction between the guide rail and the slide and prolongs their service life, and allows lubrication refills to be performed more rarely. The modules and guide rails are suitable for composing sections more than 10 m long. The assembled guide rails have a run parallelism of less than 0.030 mm. The assembly of caged ball roller slides and guide rails normally also involves the machining of the related seat in the profile (code M).

Racks / Toothed pinions

Racks with helical teeth, made of induction-hardened steel and hardened and tempered alloy steel, are available with three different modules: m2, m3 and m4.

PAR versions with guide rails and roller slides, assembled with ground, KSD induction-hardened racks with pinions in highperformance tempered and surface-hardened steel (RD). PASM versions with guide rails and caged ball roller slides, are normally assembled with KSD induction hardened racks with pinions in hardened and tempered RD steel. High-performance KRD racks are available upon request (Rs>900 MPa): hardened and tempered, induction-hardened, and fully ground (page TL-56). With RD pinions, KRD racks and continuous lubrication, speeds of up to 5 m/s can be reached.

Stop bumpers

Important: the rubber stop bumpers provided with standard linear models are suitable and regarded as static limit switches. For special needs, such as stops if the drive breaks, please specify loads, dynamics, details and discuss the use of specific parts, accessories and devices (reinforced plates and attachments - shock absorbers, anti-drop devices, etc.) with our technical dept.

Energy chains or accessories

Energy chains are provided upon request, together with a wide range of accessories. Adjustable brackets and supports are included. Standard sizes are those shown in the catalogue. Energy chains and accessories can be added using the order code on page TL-11.

Anti-oxidation parts and coatings

Rack modules with anti-oxidation coating are available upon request. Materials with special coatings and lubrication are selected according to the environment of use (food industry, health sector, marine environment, exposure to weather, etc.)

A - Features of the system with roller slides

The translation system consists of a plate to which two roller slides with concentric pins and two with eccentric pins are fixed. The eccentric pins help to adjust the tolerance between the roller slide and the sliding track. Check that the angular position of the rollers is such that they can support the max. working load. See page TL-62 and TL-68.

A - Assembly and adjustment of the roller slide.

Check the sense of direction of the roller slide as shown in point A. Check the alignment. Bring the roller slides with concentric pin into contact with the sliding tracks. Adjust the eccentric pins until there is no clearance and the carriage can slide easily along the bar.

IMPORTANT: overloading is easily achieved: this may result in premature wear.

NOTE: always keep friction low: if friction is high, loosen and repeat the adjustment.

No adjustments are required with guide rails and recirculating caged ball linear guides. For high-precision applications, please order low-backlash roller slides.

B - Alignment

All profile anchor supports must be perfectly aligned (with axes side by side: perfectly parallel and coplanar). When mounting the linear axes in parallel, it is necessary to not only verify the parallelism between the linear units themselves, but also the coplanarity of the surfaces of the heads so that the maximum error does not exceed 0.3 mm per meter between the parallel modules and within \pm 0.03 mm compared to the parallelism."

C - Assembly of racks

The axis of the teeth and the guide rails must be parallel within tight tolerances. In the PASM version, the rack seat and the seat of the guide rails for the caged ball roller slide guides are machined together to ensure the correct assembly and positioning accuracy of the axis.

D - Tightening specifications and precautions

Make sure all parts are locked with the appropriate screws and with the right tightening torques.

E - Gearboxes

Supplied upon request. The use of right-angle reduction gears with hollow shaft and key is recommended. With this configuration the gearbox adapting plate is complete with shaft, pinion and step bearing. Otherwise, upon request, the adapting plate can be machined according to customer specifications and the pinion, if obtainable from the standard version. Backlash between the pinion and rack is only adjusted if the gearbox is supplied (or available).

Accuracy

The accuracy of this system is based on the tolerance of:

- 1. guide rails
- 2. rolling parts
- 3. transmission chain (e.g. rack and pinion)

V-shaped guide rails

Made of specially treated high-carbon steel alloy. Their accuracy is shown in the figure below and they are supplied in the following version: induction-hardened with a special grinding process. Hardness: induction hardened min. 58HRC;

Rolling parts

Rollers with double rows of angular contact ball bearings to absorb axial force have a low friction coefficient (\pm 0.03) and are complete with sliding sealing rings.

Roller tolerance and radial backlash are in line with DIN 620 parts 2 and 3 (except for the convex external ring R=500 mm), while the load and calculation coefficients comply with DIN ISO 281 and with DIN ISO 76.

Guide rails and caged ball roller slides

As a general rule, these are generally supplied in "normal" accuracy classes. Thus, they are suitable to ensure the appropriate combination of positioning precision, stiffness and self-alignment required for standard industrial applications. Higher levels of accuracy with low backlash are available upon request.

Lubrication

Rack and pinion

These parts must be lubricated regularly with a gear grease (for high working pressures). An automatic, programmable system is available to ensure correct lubrication of the teeth (page TL-61).

The tangential force and toque values shown in the table on page TL-61 refer to properly lubricated racks.

Rollers and roller slides

Roller slides and V-shaped rollers are provided with a permanent lubrication system. If properly used, this eliminates the need for any further maintenance, also considering the average life of handling devices. Do not use solvents to clean rollers or roller slides, as you could unintentionally remove the grease lubricating coat applied to the rolling elements during assembly. However, grease may be added slowly to lithium soap according to DIN 51825 - K3N.

V-shaped guide rails

If properly assembled, with the felt scraper in place, these guides do not require any lubrication, which could attract impurities and have negative consequences.

Guide rails and caged ball roller slides

Due to the cage keeping the ball bearings apart, these units are regarded as permanently lubricated; considering the average life of handling devices, no maintenance is needed before 5000 Km. For applications where dynamic performance is required, our technical dept. will consider the need for special seals or suitable tanks or lubrication systems.

Standard assembly solutions

Sizing template

Our **technical department** is available to check sizing calculations. Please fill in the form with all the necessary data and send it to our technical dept., which will recommend the most suitable size according to the forces applied and precision required.

Technical data sheet

For a correct design of the system, please fill the form below and send it to our technical dept.

Date:	.Request n°
Filled in by	·
Company	
Address	
Phone	Fox
	Г ал
E-mail	

SIZING TEMPLATE

optional data required data

Assembly solutions (see page TL-5) no		Z-Axis		Y-Axis		X-Axis	
Total length	Lz		Ly		Lx		[mm]
Total working load including EOAT (add Z axis for Y and X axes)	Рс		Ру		Px		[kg]
Equipment weight on carriage (gearbox, cylinder, OPTIONAL)			Pay		Pax		[kg]
Weight distributed on the beam (energy chain)	Pdz		Pdy		Pdx		[kg/m]
Beam supports			n°		n°		
Max. projection (any cantilever, the largest)	Sz		Sy		Sx		[mm]
Span (largest)			Ldy		Ldx		[mm]
Offset load's centre of gravity (X-axis)	Lcx		-				[mm]
Offset load's centre of gravity (Y-axis)	Lcy						[mm]
Offset load's centre of gravity (Z-axis)	Lcz						[mm]
Additional force, if any	F		F		F		[N] +/-
Possible distance between the carriages (see solutions 6 - 7 on page TL-5)			Dy		Dx		[mm]
Transmission performance	η						
Assembly: vertical= 90° - slope = 30° , 45° , 60° - horizontal = 0°	α°						
Stroke	Qz		Qy		Qx		[mm]
Speed	Vz		Vy		Vx		[m/s]
Acceleration	Az		Ay		Ax		[m/s ²]
Cycle time	Tz		Ту		Тх		[s]
Positioning accuracy	+/-						
Repeatability	+/-						[mm]
Work environment (temperature and cleanliness)							
Daily working cycles	N°						
Minimum service life requested							[Km]
		14/				1.	

These tables are useful for making a preliminary selection with load applied in a central position with respect to the plate or profile axis. Z axis length is < 1,600 mm.

Deflection is computed assuming continuous beams having the same span and concentrated static loads.

		PA	2X	ЗХ	4X	5 X	6X	8X	10X	LC			
<u>.</u>					De	Deflection							
×.	50		1,4							5000			
Sity	100		1,8							5000			
0a0	200		2,7	1,8						5000			
cal	300			2,3	2,7					5000			
g	400				3,3	2,4				5000			
ĕ	500					2,8	1,8			5000			
ax	600						2	2		6000			
Σ	800							2,5	1,8	6000			
	1000								2,1	7000			

In the following table, select the appropriate X axes according to the load.

N.B. per i PA 8X e 10X verticale compensare il carico.

	In	the	following	table,	select t	the a	appropriate	Y-X	axes	according	to	the	load
--	----	-----	-----------	--------	----------	-------	-------------	-----	------	-----------	----	-----	------

-		PA	2/1	3/1	4/1	5/2	6/2	8/3	6/4	8/6	10/6	10/8	LC	
Š	Deflection													
	50		1,9						A				5000	
aci	100		2,4	1,7	2	1,6							5000	
ap	200		◄			-2,2-	- 0, 8-	0, 8-					5000	
Ö	300						1,6	1,6	1,6				6000	
ğ	400								1,9	2	0,9		6000	
×	500									2,2	1		6000	
Ma	600									2,5	1,2	1,2	6000	
	800											2,2	7000	

Y-Z-axes

In the following table, select the appropriate X and Y-Z axes according to the load.

	Y-Z-axes														
		PA	2/1	3/1	4/1	5/2	6/2	8/3	6/4	8/6	10/6	10/8			
	PA	load [kg.]	100	100	100	200	200	300	400	600	600	700			
	2X	(200)													
Ċ.	3X	(300)													
-a	4X	(400)													
\times	5X	(500)													
	6X	(600)	◄												
	8X	(800)													
	10X	(1000)													

X-Y-Z-axes

NB: The choice of X axis is based upon the actual load, the supporting points, max. deflection and the total weight of the Y-Z axes.

EXAMPLE: selection of 3-axis system with roller slides

(Please see page TL-10 and the system pages for the nomenclature)

DATA: Total working load 300 kg, X axis stroke: 5,000 mm, Y axis stroke: 4,000 mm, Z axis stroke: 2,000 mm, support points: 2 By analysing the table of Y-Z axes based on the working load (Pc), profile length (Ly) and deflection, the selection falls on one PA 8/3 (load 300 kg.) system.

Check: $P_{eff} = P_{max}$ (Lz - 1,600)/1,000•q_z = 300-(2,900-1,600)/1,000•35 = 254.5 kg. < di 300 kg (not sufficient).

Therefore select the larger size PA 6/4 (max. load capacity 400 kg.)

 $M_{toty+z} PA 6/4 = M_{base} + (q_v^{\bullet} strokeQ_v + q_z^{\bullet} strokeQ_z)/1000 + Pc = 244 + (66^{\bullet}4,000 + 48^{\bullet}2,000)/1,000 + 300 = 904 \text{ kg}.$

 $P_{totx} = M_{tot} PA 6/4 (Y+Z) \cdot 0.66 = 596.6 kg.$

 $Lx = stroke_x + 1,200 approx. = 5,000+1,200 = 6,200 mm$

By analyzing the table of X axes based on the load (P_{totx}) profile length (Lx) and deflection, it is possible to select 2 linear axes PA 6X Chosen composition: n°1 PA 6/4 + n° 2 PA 6X

Perform a final analysis by computing the deflection based on the actual size of the spans. Our technical dept. is at your complete disposal to help you examine the most suitable applications for your requirements and help you ...with motor and drive sizing for the whole project.

Special applications with standard modules

Assembly positions and load direction

For single-axis roller versions

KEY:

Direction of load

Linear axis support

Axis orientation position X - Y - Z:

Simplified code setting of the module

EXAMPLE		Р	Α	S	М	5	/	2	1	mm/mm/	••••			
SERIES	Р													
SLIDE	A= rack													
DRIVE	R= Roller slides S= caged ball linear g	R= Roller slides S= caged ball linear guides - high performance												
PROFILE MACHINING	M= profile with machined	M= profile with machined guide plane and rack plane												
SIZE OF X-AXIS	See catalog from page	See catalog from page TL-16 to page TL-53												
SIZE OF Z-AXIS	See catalogue from pa "X"= Z-axis not provid													
STROKE / Length	"mm" = X-axis / Y-axis	s / Z-axis	6											
ACCESSORY CODES	Various accessory co	des												

Order code

- The energy chain is on request
- Pinion, reduction units, gearboxes and compensating cylinders supplied by the customer can be fitted upon request.
 Machining to specifications (drilling, hollowing, spot-facing, etc.) on the free surfaces of the plates.
- Customized applications (optional: systems with several plates, machining to drawing specifications, structural inspections for special loads, Cartesian robots with three or more axes, etc.)

Medium profiles

E 01-4 (90x90)		
Weight	6	kg/m
Max. length	6	m
Moment of inertia Ix	2,027,000	mm ⁴
Moment of inertia ly	2,027,000	mm ⁴
Polar moment of inertia Iz	1,100,000	mm ⁴
Bending section modulus Wx	45,040	mm³
Bending section modulus Wy	45,040	mm ³

MA 1-5 (100x100)		
Weight	9.5	kg/m
Max. length	6	m
Moment of inertia Ix	3,800,000	mm⁴
Moment of inertia ly	3,650,000	mm ⁴
Polar moment of inertia Iz	1,900,000	mm⁴
Bending section modulus Wx	76,000	mm³
Bending section modulus Wy	73,000	mm³

7400568 energy chain support profile				
Weight 1.3 kg/m				
Available length	6	m		

E 01-5 (90x180)		
Weight	approx. 12	kg/m
Max. length	8	m
Moment of inertia Ix	15,180,000	mm ⁴
Moment of inertia ly	4,420,000	mm ⁴
Polar moment of inertia Iz	4,400,000	mm ⁴
Bending section modulus Wx	168,670	mm³
Bending section modulus Wy	98,220	mm ³

Load bearing profiles

STATYCA (120x170)		
Weight	17	kg/m
Max. length	12	m
Moment of inertia Ix	20,360,000	mm ⁴
Moment of inertia ly	10,200,000	mm ⁴
Polar moment of inertia Iz	8,460,000	mm ⁴
Bending section modulus Wx	239,500	mm³
Bending section modulus Wy	170,000	mm ³

VALYDA (120x200)		
Weight	21	kg/m
Max. length	12	m
Moment of inertia Ix	32,980,000	mm ⁴
Moment of inertia ly	12,980,000	mm ⁴
Polar moment of inertia Iz	10,500,000	mm ⁴
Bending section modulus Wx	329,800	mm³
Bending section modulus Wy	215,130	mm³
Only anodized up to	9	m

* Dovetail inserts available in various size

LOGYCA (120x220)		
Weight	25	kg/m
Max. length	12	m
Moment of inertia Ix	46,550,000	mm ⁴
Moment of inertia ly	15,650,000	mm ⁴
Polar moment of inertia Iz	14,300,000	mm ⁴
Bending section modulus Wx	423,182	mm ³
Bending section modulus Wy	260,833	mm ³
Only anodized up to	9	m

m

PRATYCA (170x280) Weight 40 kg/m Max. length 12 Moment of inertia Ix 134,103,000 mm^4 Moment of inertia ly 50,288,000 mm^4 Polar moment of inertia Iz 72,700,000 mm^4 Bending section modulus Wx 957,790 mm³ Bending section modulus Wy 591,620 ${\sf mm}^3$

81

67 42 69 46 200

Drilling holes 210 265 320 360 Х 155 17 6

SOLYDA (200x360)		
Weight	60	kg/m
Max. length	12	m
Moment of inertia Ix	318,687,200	mm⁴
Moment of inertia ly	105,533,000	mm⁴
Polar moment of inertia Iz	150,000,000	mm⁴
Bending section modulus (Wx)	1,770,500	mm³
Bending section modulus (Wy)	1,035,300	mm ³

P / A / R / R / 180 / Stroke / Length / FRD / ...

PC

60 Kg

* For indication only, variable according to the gearbox chosen

Performance	X-axis	
Max. load (Pc max) with load on a	kis (L \leq 1,600 i	mm)
Max. speed	3.5	[m/s]
Max. acceleration	8	[m/s ²]
Repeatability	± 0.2	[mm]
Beam max. length without joint	8,000	[mm]

Assembly positions and load direction, see page TL-10

Recommended max working conditions						
Model	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _v [N]	F _z [N]
PAR 1	490	1,170	1,170	2,900	5,900	5,900
The valu machine acting in consult o	les shown a ry. They re idividually. our technic	above inclu efer to may In case of al dept.	de a safety kimum perf peak force	coefficio ormance es acting	ent for a e with ea g togethe	utomated ach force er please

Construction data	X-axis	
Load-bearing beam (see page TL-12 to TL-15)	E01-5	
Rack (hardened, helical teeth, ground: module KSD)	module 2	[mm ²]
Guide rail	28x11 (hardened)	
Translation	4 roller slides with 4 rollers Ø30	
Room available for energy chain	115x45 approx.	[mm ²]
Pinion pitch diameter type RD	44.56 (as an alternative 63.66)	[mm]

Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 28	[kg]
Slide (plates + carriages)	M _{slide} = 15	[kg]
Beam (incl. guide rails and rack)	q _X = 19	[kg/m]

Formula:

Module total weight: M_{tot}=M_{base}+(q_x•stroke_x)/1,000 Stroke_x [mm]

P / A / S / 180 / Stroke / Length / FRD / ...

* For indication only, variable according to the gearbox chosen

Performances	X-axis	
Max. load (Pc max) with load on ax	is (L \leq 1,600 ı	mm)
Max. speed	3.5	[m/s]
Max. acceleration	10	[m/s ²]
Repeatability	± 0.05	[mm]
Beam max. length without joint	8,000	[mm]

Recommended max working conditions						
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _v [N]	F _z [N]
PAS 1	1,250	3,450	3,450	2,900	16,950	16,950
The valu	ies shown a	above inclu	de a safety	coefficio	ent for a	utomated

machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Construction data	X-axis	
Load-bearing beam (see page TL-12 to TL-15)	E01-5	
Rack (hardened, helical teeth, ground: module KSD)	module 2	[mm ²]
Translation: 4 caged ball roller slides and guide rails	Size 20	
Room available for energy chain	115x45 approx.	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	44.56 (as an alternative 63.66)	[mm]

Weights	X-axis	
"Base" model (stroke _x =0)	$M_{base} = 27$	[kg]
Slide (plates + carriages)	M _{slitta} = 14	[kg]
Beam (incl. guide rails and rack)	q _X = 19	[kg/m]

Formules:

PC

P / A / R / Q/ 170 / Stroke / Length / FRD / ...

* For indication only, variable according to the gearbox chosen

Performance	X-axis	
Max. load (Pc max) with load on a	xis (L \leq 1,600 n	nm)
Max. speed	3.5	[m/s]
Max. acceleration	10	[m/s ²]
Repeatability	± 0.2	[mm]
Beam max. length without joint	12000	[mm]

Recommended max working conditions							
Model	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]	
PAR 2	560	1,350	1,350	5,980	7,000	7,050	
The valu machine acting in consult o	les shown a ry. They re idividually. our technic	above inclu efer to may In case of al dept.	de a safety kimum perf peak force	coefficion ormance es acting	ent for a e with ea g togeth	utomated ach force er please	

Assembly positions and load direction, see page TL-10

Construction data	X-axis	
Load-bearing beam (see page TL-12 to TL-15)	Statyca	
Rack (hardened, helical teeth: module KSD)	module 3	[mm ²]
Guide rail	35x16 (hardened and polished)	
Translation	4 roller slides with 2 rollers Ø40	
Room available for energy chain	115x45	[mm ²]
Pinion pitch diameter type RD	63.66 (as an alternative 89.13)	[mm]

Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 59 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 29 approx.	[kg]
Beam (incl. guide rails and rack)	$q_X = 31$ approx.	[kg/m]

Formula:

Module total weight: M_{tot}=M_{base}+(q_x•stroke_x)/1,000 Stroke_x [mm]

PASM 2 Tecline PC P / A / S / M / 170 / Stroke / Length / FRD / ... 80 Kg Z50 Kg L=Stroke + 900 Stroke 150 150 600 ÷. + + + 140 684 14 -170 450

* For indication only, variable according to the gearbox chosen

110*

226,2

++

149

tt

25

125 ,

120

Performances	X-axis	
Max. load (Pc max) with load on a	xis (L \leq 1,600 n	nm)
Max. speed	3.5	[m/s]
Max. acceleration	10	[m/s ²]
Repeatability	± 0.05	[mm]
Beam max. length without joint	12000	[mm]

Recommended max working conditions						
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _v [N]	F _z [N]
PASM2	1,170	3,450	3,450	5,980	16,950	16,950
The value	es shown a ry. They re	above inclu efer to max	de a safety	coefficio	ent for a	utomated ach force

140

acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Construction data	X-axis	
Load-bearing beam (see page TL-12 to TL-15)	Statyca	
Rack (hardened, helical teeth, ground: module KSD)	module 3	[mm ²]
Translation: 4 caged ball roller slides and guide rails	Size 20	
Room available for energy chain	115x45	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	63.66 (as an alternative 89.13)	[mm]

Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 57 approx.	[kg]
Slide (plates + carriages)	M _{slitta} = 29 approx.	[kg]
Beam (incl. guide rails and rack)	$q_X = 29$ approx.	[kg/m]

Formula:

Module total weight: Mtot=Mbase+(qx•strokex)/1,000 Strokex [mm]

TL-19

P / A / R / Q / 200 / Stroke / Length / FRD / ...

* For indication only, variable according to the gearbox chosen

Performance	X-axis	
Max. load (Pc max) with load on a	xis (L \leq 1,600 mm)	
Max. speed	3	[m/s]
Max. acceleration	7	[m/s ²]
Repeatability	± 0.2	[mm]
Beam max. length without joint	12000	[mm]

Assembly positions and load direction, see page TL-10

Recommended max working conditions						
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
PAR 3	1,115	2,685	2,685	5,980	14,100	14,100
The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.						

Construction data	X-axis	
Load-bearing beam (see page TL-12 to TL-15)	Valyda	
Rack (hardened, helical teeth, ground: module KSD)	module 3	[mm ²]
Guide rail	35x16 (hardened and polished)	
Translation	4 roller slides with 4 rollers Ø40	
Room available for energy chain	115x45	[mm ²]
Pinion pitch diameter type RD	63.66 (as an alternative 89.13)	[mm]

Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 70 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 36 appox.	[kg]
Beam (incl. guide rails and rack)	$q_X = 35$ approx.	[kg/m]

Formula:

Module total weight: $M_{tot}=M_{base}+(q_x \circ stroke_x)/1,000$ Stroke_x [mm]

PC

P / A / S / M / 200 / Stroke / Length / FRD / ...

* For indication only, variable according to the gearbox chosen

Performances	X-axis	
Max. load (Pc max) with load on a	axis (L \leq 1,600 r	nm)
Max. speed	3	[m/s]
Max. acceleration	7	[m/s ²]
Repeatability	± 0.05	[mm]
Beam max. length without joint	12000	[mm]

Recommended max working conditions						
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _v [N]	F _z [N]
PASM3	1,280	3,500	3,500	5,980	16,950	16,950
The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force						

acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Construction data	X-axis	
Load-bearing beam (see page TL-12 to TL-15)	Valyda	
Rack (hardened, helical teeth, ground: module KSD)	module 3	[mm ²]
Translation: 4 caged ball roller slides and guide rails	Size 20	
Room available for energy chain	115x45	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	63.66 (as an alternative 89.13)	[mm]

Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 68 approx.	[kg]
Slide (plates + carriages)	M _{slitta} = 36 approx.	[kg]
Beam (incl. guide rails and rack)	$q_X = 33$ approx.	[kg/m]

Formula:

Module total weight: Mtot=Mbase+(qx•strokex)/1,000 Strokex [mm]

(Å

115*

* For indication only, variable according to the gearbox chosen

P / A / R / P / 200 / Stroke / Length / FRD / ...

Weights X-axis "Base" model (stroke_x=0) $M_{base} = 96$ approx. [kg] Slide (plates + carriages) M_{slide} = 48 approx. [kg] Beam (incl. guide rails and rack) $q_X = 48$ approx. [kg/m]

Formula:

Module total weight: Mtot=Mbase+(qx•strokex)/1,000 Strokex [mm]

*		0.1	
<u>150</u>	650	Stroke	150

PC

100 Kg High Cycle Rate Low Cycle Rate 400 Kg

Fż

Performance	X-axis		Re
Max. load (Pc max) with load on a	xis (L \leq 1,600 n	nm)	Мо
Max. speed	3	[m/s]	PA
Max. acceleration	7	[m/s ²]	The
Repeatability	± 0.2	[mm]	acti
Beam max. length without joint	12000	[mm]	con

Assembly positions and load direction, see page TL-10

Recon	nmended	l max wo	orking co	onditio	ns	
Model	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _v [N]	F _z [N]
PAR 4	2,200	5,350	5,380	10,990	23,925	23,925
The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force						

Construction data	X-axis	
Load-bearing beam (see page TL-12 to TL-15)	Valyda	
Rack (hardened, helical teeth, ground: module KSD)	module 4	[mm²]
Guide rail	55x25 (hardened and polished)	
Translation	4 roller slides with 4 rollers Ø52	
Room available for energy chain	115x45	[mm ²]
Ø Pinion pitch diameter type RD	76.39 (as an alternative 106.10)	[mm]

Ľ]	
ce	X-axis	Recommended ma
2c) with lead on axis $(1 < 1.600 \text{ mm})$	Model M [Nm] M [

Recommended max working conditions								
Model	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _v [N]	F _z [N]		
PAR 4	2,200	5,350	5,380	10,990	23,925	23,925		
The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our tacking together please								

•

P / A / S / M / 200 / Stroke / Length / FRD / ...

Tecline

* For indication only, variable according to the gearbox chosen

Performances	X-axis			
Max. load (Pc $_{max}$) with load on axis (L \leq 1,600 mm)				
Max. speed	3	[m/s]		
Max. acceleration	7	[m/s ²]		
Repeatability	± 0,05	[mm]		
Beam max. length without joint	12000	[mm]		

Recommended max working conditions								
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _v [N]	F _z [N]		
PASM4	1,850	5,200	5,200	10,990	24,100	24,100		
The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please								

Consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Construction data	X-axis	
Load-bearing beam (see page TL-12 to TL-15)	Valyda	
Rack (hardened, helical teeth, ground: module KSD)	module 4	[mm ²]
Translation: 4 caged ball roller slides and guide rails	Size 25	
Room available for energy chain	115x45	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	76.39 (as an alternative 106.10)	[mm]

Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 80 approx.	[kg]
Slide (plates + carriages)	M _{slitta} = 38 approx.	[kg]
Beam (incl. guide rails and rack)	$q_X = 40$ approx.	[kg/m]

Formula:

Module total weight: $M_{tot}=M_{base}+(q_x \circ stroke_x)/1,000$ Stroke_x [mm]

P / A / R / P / 220 / Stroke / Length / FRD / ...

 * For indication only, variable according to the gearbox chosen

Performance	X-axis	
Max. load (Pc max) with load on a	kis (L \leq 1,600 r	mm)
Max. speed	3	[m/s]
Max. acceleration	6	[m/s ²]
Repeatability	± 0.2	[mm]
Beam max. length without joint	12000	[mm]

Recommended max working conditions								
Model	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]		
PAR 5	3,000	6,720	6,720	10,990	29,900	29,900		
The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.								

Assembly positions and load direction, see page TL-10

Construction data	X-axis	
Load-bearing beam (see page TL-12 to TL-15)	Logyca	
Rack (hardened, helical teeth, ground: module KSD)	module 4	[mm ²]
Guide rail	55x25 (hardened and polished)	
Translation	4 roller slides with 4 rollers Ø62	
Room available for energy chain	115x45	[mm ²]
Ø Pinion pitch diameter type RD	76.39 (as an alternative 106.10)	[mm]

Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 106 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 54 approx.	[kg]
Beam (incl. guide rails and rack)	$q_{\chi} = 52$ approx.	[kg/m]

Formula:

Module total weight: Mtot=Mbase+(qx•strokex)/1,000 Strokex [mm]

PASM 5

P / A / S / M / 220 / Stroke / Length / FRD / ...

* For indication only, variable according to the gearbox chosen

Performances	X-axis	
Max. load (Pc max) with load on a	xis (L \leq 1,600 r	nm)
Max. speed	3	[m/s]
Max. acceleration	6	[m/s ²]
Repeatability	± 0.05	[mm]
Beam max. length without joint	12000	[mm]

Recommended max working conditions							
Model	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _v [N]	F _z [N]	
PASM	5 2,060	5,200	5,200	10,990	24,100	24,100	
-							

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Construction data	X-axis	
Load-bearing beam (see page TL-12 to TL-15)	Logyca	
Rack (hardened, helical teeth, ground: module KSD)	module 4	[mm ²]
Translation: 4 caged ball roller slides and guide rails	Size 25	
Room available for energy chain	115x45	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	76.39 (as an alternative 106.10)	[mm]

Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 90 approx.	[kg]
Slide (plates + carriages)	M _{slitta} = 44 approx.	[kg]
Beam (incl. guide rails and rack)	$q_X = 44$ approx.	[kg/m]

Formula:

Module total weight: Mtot=Mbase+(qx•strokex)/1,000 Strokex [mm]

P / A / R / P / 280 / Stroke / Length / FRD / ...

300 Kg PC High Cycle Rate Low Cycle Rate 600 Kg

* For indication only, variable according to the gearbox chosen

Performance	X-axis	
Max. load (Pc max) with load on a	kis (L \leq 1,600 r	mm)
Max. speed	3	[m/s]
Max. acceleration	4	[m/s ²]
Repeatability	± 0.2	[mm]
Beam max. length without joint	12000	[mm]

Assembly positions and load direction, see page TL-10

Recom	mended	l max wo	orking co	onditio	ns	
Model	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
PAR 6	3,700	8,770	8,770	10,990	29,900	29,900
The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please						

consult our technical dept.

Construction data	X-axis	
Load-bearing beam (see page TL-12 to TL-15)	Pratyca	
Rack (hardened, helical teeth, ground: module KSD)	module 4	[mm²]
Guide rail	55x25 (hardened and polished)	
Translation	4 roller slides with 4 rollers Ø62	
Room available for energy chain	175x45	[mm ²]
Pinion pitch diameter type RD	76.39 (as an alternative 106.10)	[mm]

Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 164	[kg]
Slide (plates + carriages)	M _{slide} = 79	[kg]
Beam (incl. guide rails and rack)	q _X = 66	[kg/m]

Formula:

Module total weight: $M_{tot}=M_{base}+(q_x \circ stroke_x)/1,000$ Stroke_x [mm]

PASM 6

P / A / S / M / 280 / Stroke / Length / FRD / ...

 * For indication only, variable according to the gearbox chosen

Tecline

PC

Performances	X-axis	
Max. load (Pc max) with load on a	xis (L \leq 1,600 r	nm)
Max. speed	3	[m/s]
Max. acceleration	5	[m/s ²]
Repeatability	± 0.05	[mm]
Beam max. length without joint	12000	[mm]

Recon	nmendeo	l max w	orking o	conditi	ons	
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _v [N]	F _z [N]
PASM	6 4,160	6,750	6,750	10,990	34,050	34,050
The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please						

Consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Construction data	X-axis	
Load-bearing beam (see page TL-12 to TL-15)	Pratyca	
Rack (hardened, helical teeth, ground: module KSD)	module 4	[mm ²]
Translation: 4 caged ball roller slides and guide rails	Size 30	
Room available for energy chain	175x45	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	76.39 (as an alternative 106.10)	[mm]

Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 149 approx.	[kg]
Slide (plates + carriages)	M _{slitta} = 69 approx.	[kg]
Beam (incl. guide rails and rack)	$q_X = 60$ approx.	[kg/m]

Formula:

Module total weight: $M_{tot}=M_{base}+(q_x \circ stroke_x)/1,000$ Stroke_x [mm]

P / A / R / P / 280 / Stroke / Length / FRD / ...

300 Kg PC High Cycle Rate Low Cycle Rate 800 Kg

* For indication only, variable according to the gearbox chosen

Performance	X-axis	
Max. load (Pc max) with load on a	axis (L \leq 1,600 mm)	
Max. speed	2.5	[m/s]
Max. acceleration	2	[m/s ²]
Repeatability	± 0.25	[mm]
Beam max. length without joint	12000	[mm]

Assembly positions and load direction, see page TL-10

** With vertical positioning of the unit, a partial load capacity compensation is required

Recommended max working conditions						
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _v [N]	F _z [N]
PAR 8	5,550	8,800	13,160	10,990	29,900	29,900

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.

The values shown can be achieved with roller slides with 6 rollers suitable for maximum performance (see page TL-63-TL-64).

Construction data	X-axis	
Load-bearing beam (see page TL-12 to TL-15)	Pratyca	
Rack (hardened, helical teeth: module KRD)	module 4	[mm ²]
Guide rail	55x25 (hardened and polished)	
Translation	4 roller slides with 6 rollers Ø62	
Room available for energy chain	175x45	[mm ²]
Ø Pinion pitch diameter type RD	76.39 (as an alternative 106.10)	[mm]

Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 173 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 88 approx.	[kg]
Beam (incl. guide rails and rack)	$q_X = 66 \text{ approx.}$	[kg/m]

Formula:

Module total weight: Mtot=Mbase+(qx•strokex)/1,000 Strokex [mm]

PASM 8

P / A / S / M / 280 / Stroke / Length / FRD / ...

Tecline

* For indication only, variable according to the gearbox chosen

Mx Fx	Mz	My Fy	
Fx ▲	Mz Fz	My ` Fy	

Performances	X-axis	
Max. load (Pc max) with load on a	axis (L \leq 1,600 mm)	
Max. speed	2.5	[m/s]
Max. acceleration	2	[m/s ²]
Repeatability	± 0.1	[mm]
Beam max. length without joint	12000	[mm]

Recommended max working conditions						
Model	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _v [N]	F _z [N]
PASM	8 5,840	13,100	13,100	10,990	47,350	47,350

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Construction data	X-axis	
Load-bearing beam (see page 15/17)	Pratyca	
Rack (hardened, helical teeth, ground: module KSD)	module 4	[mm ²]
Translation: 4 caged ball roller slides and guide rails	Size 35	
Room available for energy chain	175x45	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	76.39 (as an alternative 106.10)	[mm]

Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 159 approx.	[kg]
Slide (plates + carriages)	M _{slitta} = 76 approx.	[kg]
Beam (incl. guide rails and rack)	$q_X = 64$ approx.	[kg/m]

Formula:

Module total weight: $M_{tot}=M_{base}+(q_x \circ stroke_x)/1,000$ Stroke_x [mm]

P / A / R / P / 360 / Stroke / Length / FRD / ...

* For indication only, variable according to the gearbox chosen

Performance	X-axis	
Max. load (Pc max) with load on	axis (L \leq 1,600 mm)	
Max. speed	2.5	[m/s]
Max. acceleration	2	[m/s ²]
Repeatability	± 0.25	[mm]
Beam max. length without joint	12000	[mm]

Assembly positions and load direction, see page TL-10

** With vertical positioning of the unit, a partial load capacity compensation is required

Recommended max working conditions						
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _v [N]	F _z [N]
PAR 10	6,900	8,800	13,160	10,990	29,900	29,900

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The values shown can be achieved with roller slides with 6 rollers suitable for maximum performance (see page TL-63-TL-64).

Construction data	X-axis	
Load-bearing beam (see page TL-12 to TL-15)	Solyda	
Rack (hardened, helical teeth, ground: module KSD)	module 4	[mm ²]
Guide rail	55x25 (hardened and polished)	
Translation	4 roller slides with 6 rollers Ø62	
Room available for energy chain	115x45	[mm ²]
Pinion pitch diameter type RD	76.39 (as an alternative 106.10)	[mm]

Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 196 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 88 approx.	[kg]
Beam (incl. guide rails and rack)	$q_X = 85$ approx.	[kg/m]

Formula:

Module total weight: Mtot=Mbase+(qx•strokex)/1,000 Strokex [mm]

Performances	X-axis	
Max. load (Pc max) with load on	axis (L \leq 1,600 mm)	
Max. speed	2.5	[m/s]
Max. acceleration	3	[m/s ²]
Repeatability	± 0.1	[mm]
Beam max. length without joint	12000	[mm]

Recommended max working conditions						
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _v [N]	$F_{z}[N]$
PASM1	0 7,240	13,100	13,100	10,990	47,350	47,350

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Construction data	X-axis	
Load-bearing beam (see page TL-12 to TL-15)	Solyda	
Rack (hardened, helical teeth, ground: module KSD)	module 4	[mm ²]
Translation: 4 caged ball roller slides and guide rails	Size 35	
Room available for energy chain	175x45	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	76,39 (as an alternative 106.1)	[mm]

Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 182 approx.	[kg]
Slide (plates + carriages)	M _{slitta} = 76 approx.	[kg]
Beam (incl. guide rails and rack)	$q_X = 83$ approx.	[kg/m]

Formula:

Module total weight: $M_{tot}=M_{base}+(q_x \circ stroke_x)/1,000$ Stroke_x [mm]

PAR 1/05

Y-Axis / P / A / R / Q / 180 / Stroke / Length / FRD / ... Z-Axis / P / A / R / Q / 90 / Stroke / Length / X / FRD / ...

* For indication only, variable according to the gearbox chosen

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ≤	1,600 mm)	
Max. speed	3.5	3.5	[m/s]
Max. acceleration	8	5	[m/s ²]
Repeatability	-	±0.2*	[mm]
Beam max. length without joint	8000	6000	[mm]

* Reference value considering a stroke of 1000 mm on Z axis.

Recom	mended r	nax work	ing condi	tions	
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PAR 1/0	5 490	1,170	1,170	1,600	1,620
The value	s shown ab	ove include	a safetv coe	fficient for a	automated

machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Y-axis	Z-axis	
E01-5	E01-4	
module 2	module 2	[mm ²]
28x11 (hardened)	28x11 (hardened)	
4 roller slides with 4 rollers Ø30	4 V-shaped rollers Ø63	
115x45	75x45	[mm ²]
44.56 (as an alternative 63.66)	44.56 (as an alternative 63.66)	[mm]
	Y-axis E01-5 module 2 28x11 (hardened) 4 roller slides with 4 rollers Ø30 115x45 44.56 (as an alternative 63.66)	Y-axis Z-axis E01-5 E01-4 module 2 module 2 28x11 (hardened) 28x11 (hardened) 4 roller slides with 4 rollers Ø30 4 V-shaped rollers Ø63 115x45 75x45 44.56 (as an alternative 63.66) 44.56 (as an alternative 63.66)

Weights	Y-axis		Z-axis	
"Base" model (stroke _x and stroke _z =0)		$M_{base} = 59$		[kg]
Slide (plates + carriages)		$M_{slide} = 26$		[kg]
Beam (incl. guide rails and rack)	$q_y = 22$		q _z = 15	[kg/m]

Formules:

Stroke_x and stroke_z [mm]

PC

🛾 80 Kg

8

5 Kg High Cycle Rate Low Cycle Rate

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load of	n axis (Lz \leq	1,600 mm)	
Max. speed	3.5	3.5	[m/s]
Max. acceleration	8	5	[m/s ²]
Repeatability	-	±0.1*	[mm]
Beam max. length without joint	8000	6000	[mm]

* Reference value considering a stroke of 1000 mm on Z axis.

Recommended max working conditions					
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PAS 1/05	1,220	1,440	320	1,200	2,310

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.

The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page TL-12 to TL-15)	E01-5	E01-4	
Rack (hardened, helical teeth, ground: module KSD)	module 2	module 2	[mm ²]
Translation: 4 caged ball roller slides and guide rails	size 20	size 15	
Room available for energy chain	115x45	75x45	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	44.56 (as an alternative 63.66)	44.56 (as an alternative 63.66)	[mm]

Weights	Y-axis	Z-axis	
Base" model (stroke _x and stroke _z =0)		M _{base} = 59	[kg]
Slide (plates + carriages)		M _{slide} = 26	[kg]
Beam (incl. guide rails and rack)	$q_{y} = 24$	q _z = 14	[kg/m]

Formules:

PAR 2/1

Y-Axis / P / A / R / Q / 170 / Stroke / Length / FRD / ... Z-Axis / P / A / R / P / 90 / Stroke / Length / X / FRD / ...

* For indication only, variable according to the gearbox chosen

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load on	axis (Lz \leq 1,6	600 mm)	
Max. speed	3.5	3.5	[m/s]
Max. acceleration	10	7	[m/s ²]
Repeatability	-	±0.2*	[mm]
Beam max. length without joint	8000	6000	[mm]

Recommended max working conditions Model M_x[Nm] M_v[Nm] M_z[Nm] F_x[N] $F_{z}[N]$ PAR 2/1 956 1,340 2,300 170 3,200

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.

* Reference value considering a stroke of 1000 mm on Z axis.

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page TL-12 to TL-15)	Statyca	E01-4	
Rack (hardened, helical teeth, ground: module KSD)	module 3	module 2	[mm ²]
Guide rails	35x16 (hardened and polished)	28x11 (hardened and polished)	
Translation	4 roller slides with 2 rollers Ø40	4 V-shaped rollers Ø63	
Room available for energy chain	115x45	75x45	[mm ²]
Pinion pitch diameter type RD	63.66 (as an alternative 89.13)	44.56 (as an alternative 63.66)	[mm]

Weights	Y-axis	Z-axis	
"Base" model (stroke _x and stroke _z =0)		M _{base} = 88 approx.	[kg]
Slide (plates + carriages)		M _{slide} = 44 approx.	[kg]
Beam (incl. guide rails and rack)	$q_y = 31 \text{ approx.}$	q _z = 15 approx.	[kg/m]

Formules:

Stroke_x and stroke₇ [mm]

PC

🛾 80 Kg

25 Kg High Cycle Rate Low Cycle Rate

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ≤	1,600 mm)	
Max. speed	3.5	3.5	[m/s]
Max. acceleration	10	7	[m/s ²]
Repeatability	-	±0.1*	[mm]
Beam max. length without joint	6000	6000	[mm]
		_	

* Reference value considering a stroke of 1000 mm on Z axis.

Recom	mended r	nax work	ing condi	tions	
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PASM 2	/1 1,170	1,440	320	3,200	2,300

Mz

Fz

Мх

Мy

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page TL-12 to TL-15)	Statyca	E01-4	
Rack (hardened, helical teeth, ground: module KSD)	module 3	module 2	[mm ²]
Translation: 4 caged ball roller slides and guide rails	size 20	size 15	
Room available for energy chain	115x45	75x45	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	63.66 (as an alternative 89.13)	44.56 (as an alternative 63.66)	[mm]

Weights	Y-axis	Z-axis	
Base" model (stroke _x and stroke _z =0)		M _{base} = 89 approx.	[kg]
Slide (plates + carriages)		M _{slide} = 43 approx	[kg]
Beam (incl. guide rails and rack)	q _y = 29 approx.	$q_z = 14 approx.$	[kg/m]

Formules:

80

Stroke

600

45

Lz = Stroke + 675

PAR 3/1

Y-Axis / P / A / R / Q / 200 / Stroke / Length / FRD / ... Z-Axis / P / A / R / Q / 100 / Stroke / Length / X / FRD / ...

* For indication only, variable according to the gearbox chosen

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ≤	1,600 mm)	
Max. speed	3	3	[m/s]
Max. acceleration	7	7	[m/s ²]
Repeatability	-	±0.25*	[mm]
Beam max, length without joint	12000	6000	[mm]

Recommended max working conditions Model M_v[Nm] M_x[Nm] M_z[Nm] $F_{z}[N]$ F_x[N] PAR 3/1 1,115 1,520 352 3,200 2,400

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.

* Reference value considering a stroke of 1000 mm on Z axis.

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page TL-12 to TL-15)	Valyda	MA1-5	
Rack (hardened, helical teeth, ground: module KSD)	module 3	module 3	[mm ²]
Guide rails	35x16 (hardened and polished)	35x16 (hardened and polished)	
Translation	4 roller slides with 4 rollers Ø40	2 roller slides with 4 rollers Ø40)
Room available for energy chain	115x45	75x45	[mm ²]
Pinion pitch diameter type RD	63.66 (as an alternative 89.13)	63.66 (as an alternative 89.13)	[mm]

Weights	Y-axis	Z-axis	
"Base" model (stroke _x and stroke _z =0)	M _{base} =	111 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 8	54 approx.	[kg]
Beam (incl. guide rails and rack)	q _y = 35 approx.	$q_z = 24$ approx.	[kg/m]

Formules:

Stroke_x and stroke₇ [mm]

PC

Low Cycle Rate

🛯 100 Kg

25 Kg High Cycle Rate

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ≤	1,600 mm)	
Max. speed	3	3	[m/s]
Max. acceleration	7	7	[m/s ²]
Repeatability	-	±0.1*	[mm]
Beam max. length without joint	12000	6000	[mm]

* Reference value considering a stroke of 1000 mm on Z axis.

			Fz		
Recom	nended n	nax worki	ng condi	tions	
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PASM 3/1	1,280	1,890	485	3,200	2,400

M₇

/Fx Мх

Ńу

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page TL-12 to TL-15)	Valyda	MA1-5	
Rack (hardened, helical teeth, ground: module KSD)	module 3	module 3	[mm ²]
Translation: 4 caged ball roller slides and guide rails	size 20	size 20	
Room available for energy chain	115x45	75x45	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	63.66 (as an alternative 89.13)	63.66 (as an alternative 89.13)	[mm]

Weights	Y-axis	Z-axis	
Base" model (stroke _x and stroke _z =0)		M _{base} = 100 approx.	[kg]
Slide (plates + carriages)		M _{slide} = 45 approx.	[kg]
Beam (incl. guide rails and rack)	$q_v = 33 \text{ approx.}$	$q_z = 21 approx.$	[kg/m]

Formules:

Stroke_x and stroke₇ [mm] 95

Stroke

Lz = Stroke + 790

600

95

PAR 4/1

Y-Axis / P / A / R / P /200 / Stroke / Length / FRD / ... Z-Axis / P / A / R / Q / 100 / Stroke / Length / X / FRD / ...

* For indication only, variable according to the gearbox chosen

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ≤	a 1,600 mm)	
Max. speed	3	3	[m/s]
Max. acceleration	7	7	[m/s ²]
Repeatability	-	±0.25*	[mm]
Beam max. length without joint	12000	6000	[mm]

95 Stroke L = Stroke + 790219 755 600 200 181 95 25 143 149 120 **₽**Fx Мх M₂ Мy _{Fz}

PC

25 Kg

Recommended max working conditions					
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PAR 4/1	1520	1520	352	4250	2400

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.

* Reference value considering a stroke of 1000 mm on Z axis.

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page TL-12 to TL-15)	Valyda	MA1-5	
Rack (hardened, helical teeth, ground: module KSD)	module 4	module 3	[mm ²]
Guide rails	55x25 (hardened and polished)	35x16 (hardened and polished)	
Translation	4 roller slides with 4 rollers Ø52	2 roller slides with 4 rollers Ø40	
Room available for energy chain	115x45	75x45	[mm ²]
Pinion pitch diameter type RD	76.39 (as an alternative 106.10)	63.66 (as an alternative 89.13)	[mm]

Weights	Y-axis	Z-axis	
"Base" model (stroke _x and stroke _z =0)	$M_{base} = 140 a$	approx.	[kg]
Slide (plates + carriages)	M _{slide} = 69 ap	prox.	[kg]
Beam (incl. guide rails and rack)	q _y = 48 approx.	q _z = 24 approx.	[kg/m]

Formules:

Stroke_x and stroke_z [mm]

PASM 4/1

Y-Axis / P / A / S / M / 200 / Stroke / Length / FRD / ... Z-Axis / P / A / S / M / 100 / Stroke / Length / X / FRD / ...

* For indication only, variable according to the gearbox chosen

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ≤	a 1,600 mm)	
Max. speed	3	3	[m/s]
Max. acceleration	7	7	[m/s ²]
Repeatability	-	±0.1*	[mm]
Beam max. length without joint	12000	6000	[mm]

* Reference value considering a stroke of 1000 mm on Z axis.

			12		
Recommended max working conditions					
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PASM 4/2	1 1,700	1,890	485	4,250	2,400

E'7

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page TL-12 to TL-15)	Valyda	MA1-5	
Rack (hardened, helical teeth, ground: module KSD)	module 4	module 3	[mm ²]
Translation: 4 caged ball roller slides and guide rails	size 25	size 20	
Room available for energy chain	115x45	75x45	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	76.39 (as an alternative 106.10)	63.66 (as an alternative 89.13)	[mm]

Weights	Y-axis	Z-axis	
Base" model (stroke _x and stroke _z =0)	Ν	M _{base} = 121 approx.	[kg]
Slide (plates + carriages)	1	M _{slide} = 59 approx.	[kg]
Beam (incl. guide rails and rack)	$q_v = 40$ approx.	$q_z = 21$ approx.	[kg/m]

Formules:

Tecline

PAR 5/2

Y-Axis / P / A / R / P / 220 / Stroke / Length / FRD / ... Z-Axis / P / A / R / Q / 170 / Stroke / Length / X / FRD / ...

Ly = Stroke + 1,200Stroke 150 900 150 -¢ h RISQ \oplus -o-l -@-| 313 P Æ 135* * For indication only, variable according to the gearbox chosen

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ≤	1,600 mm)	
Max. speed	3	3	[m/s]
Max. acceleration	6	4	[m/s ²]
Repeatability	-	±0.25*	[mm]
Beam max. length without joint	12000	6000	[mm]

95 P Stroke L = Stroke + 870270 796 680 220 190 95 30 148 120 210 - Fx Мх

Recommended max working conditions					
Model	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PAR 5/2	1,520	1,520	580	4,670	3,580

Mz

Мy _{Fz}

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.

* Reference value considering a stroke of 1000 mm on Z axis.

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page TL-12 to TL-15)	Logyca	Statyca	
Rack (hardened, helical teeth: module KSD)	module 4	module 3	[mm ²]
Guide rails	55x25 (hardened and polished)	35x16 (hardened and polished)	
Translation	4 roller slides with 4 rollers Ø62	4 roller slides with 2 rollers Ø40	
Room available for energy chain	115x45	75x45	[mm ²]
Pinion pitch diameter type RD	76.39 (as an alternative 106.10)	63.66 (as an alternative 89.13)	[mm]
Guide rails Translation Room available for energy chain Pinion pitch diameter type RD	55x25 (hardened and polished) 4 roller slides with 4 rollers Ø62 115x45 76.39 (as an alternative 106.10)	35x16 (hardened and polished)4 roller slides with 2 rollers Ø4075x4563.66 (as an alternative 89.13)	[mm²] [mm]

Weights	Y-axis	Z-axis	
"Base" model (stroke _x and stroke _z =0)	M _{base} = 19	95 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 98	approx.	[kg]
Beam (incl. guide rails and rack)	q _y = 52 approx.	$q_z = 31 \text{ approx.}$	[kg/m]

Formules:

 $Stroke_X$ and $stroke_Z$ [mm]

PC

Low Cycle Rate

🛛 200 Kg

60 Kg High Cycle Rate

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ≤	1,600 mm)	
Max. speed	3	3	[m/s]
Max. acceleration	6	4	[m/s²]
Repeatability	-	±0.1*	[mm]
Beam max. length without joint	12000	6000	[mm]

* Reference value considering a stroke of 1000 mm on Z axis.

			Fz		
Recommended max working conditions					
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PASM 5/	2 2,060	3,320	1,210	4,670	3,580

Mz

Мy

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page TL-12 to TL-15)	Logyca	Statyca	
Rack (hardened, helical teeth, ground: module KSD)	module 4	module 3	[mm ²]
Translation: 4 caged ball roller slides and guide rails	size 25	size 25	
Room available for energy chain	115x45	75x45	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	76.39 (as an alternative 106.10)	63.66 (as an alternative 89.13)	[mm]

Weights	Y-axis	Z-axis	
Base" model (stroke _x and stroke _z =0)	M _{base} = 178 approx.		[kg]
Slide (plates + carriages)	M _{slide} = 95 approx.		[kg]
Beam (incl. guide rails and rack)	q _y = 44 approx.	$q_z = 29 \text{ approx.}$	[kg/m]

Formules:

PAR 6/2

Y-Axis / P / A / R / P / 280 / Stroke / Length / FRD / ... Z-Axis / P / A / R / Q / 200 / Stroke / Length / X / FRD / ...

100 Kg High Cycle Rate PC 🛯 200 Kg Low Cycle Rate

Ly = Stroke + 1,200

* For indication only, variable according to the gearbox chosen

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ⊴	≤ 1,600 mm)	
Max. speed	3	3	[m/s]
Max. acceleration	4	4	[m/s ²]
Repeatability	-	±0.25*	[mm]
Beam max. length without joint	12000	12000	[mm]

Recommended max working conditions					
Model	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PAR 6/2	1,520	1,520	670	3,585	3,665

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.

* Reference value considering a stroke of 1000 mm on Z axis.

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page TL-12 to TL-15)	Pratyca	Valyda	
Rack (hardened, helical teeth, ground: module KSD)	module 4	module 3 [mm	1 ²]
Guide rails	55x25 (hardened and polished)	35x16 (hardened and polished)	
Translation	4 roller slides with 4 rollers Ø62	2 roller slides with 4 rollers Ø40	
Room available for energy chain	175x45	75x45 [mm	1 ²]
Pinion pitch diameter type RD	76.39 (as an alternative 106.10)	63.66 (as an alternative 89.13) [mm	n]

Weights	Y-axis	Z-axis	
"Base" model (stroke _x and stroke _z =0)	M _{base} =	= 220 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 99 approx.		[kg]
Beam (incl. guide rails and rack)	q _y = 66 approx.	q _z = 35 approx.	[kg/m]

Formules:

 $Stroke_X$ and $stroke_Z$ [mm]

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ≤	1,600 mm)	
Max. speed	3	3	[m/s]
Max. acceleration	4	4	[m/s ²]
Repeatability	-	±0.1*	[mm]
Ream max length without joint	12000	12000	[mm]

* Reference value considering a stroke of 1000 mm on Z axis.

Recommended max working conditions					
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PASM 6/	2 3,000	3,310	1,375	3,585	3,665

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page TL-12 to TL-15)	Pratyca	Valyda	
Rack (hardened, helical teeth, ground: module KSD)	module 4	module 3	[mm ²]
Translation: 4 caged ball roller slides and guide rails	size 30	size 25	
Room available for energy chain	175x45	75x45	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	76.39 (as an alternative 106.10)	63.66 (as an alternative 89.13)	[mm]

Weights	Y-axis	Z-axis	
Base" model (stroke _x and stroke _z =0)	M _{base} = 202 approx.		[kg]
Slide (plates + carriages)	M _{slide} = 86 approx.		[kg]
Beam (incl. guide rails and rack)	$q_y = 60$ approx.	$q_z = 34 \text{ approx.}$	[kg/m]

Formules:

PAR 6/4

Y-Axis / P / A / R / P / 280 / Stroke / Length / FRD / ... Z-Axis / P / A / R / P / 200 / Stroke / Length / X / FRD / ...

Ly = Stroke + 1,200Stroke 150 150 900 R15Q Ð 10 F 361 -**-**≁ Ŧ 135*

* For indication only, variable according to the gearbox chosen

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	naxis (Lz ⊴	≤ 1,600 mm)	
Max. speed	3	2	[m/s]
Max. acceleration	4	3	[m/s ²]
Repeatability	-	±0.25*	[mm]
Beam max. length without joint	12000	12000	[mm]

* Reference value considering a stroke of 1000 mm on Z axis.

PC

🛛 400 Kg

100 Kg High Cycle Rate Low Cycle Rate

Recom	nended r	nax work	ing condit	ions	
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PAR 6/4	2,435	2,435	1,200	3,585	6,350

Mz

_{Fz}

Мy

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page TL-12 to TL-15)	Pratyca	Valyda	
Rack (hardened, helical teeth, ground: module KSD)	module 4	module 4	[mm ²]
Guide rails	55x25 (hardened and polished)	55x25 (hardened and polished)	
Translation	4 roller slides with 4 rollers Ø62	4 roller slides with 4 rollers Ø52	2
Room available for energy chain	175x45	75x45	[mm ²]
Pinion pitch diameter type RD	76.39 (as an alternative 106.10)	76.39 (as an alternative 106.10)) [mm]

Weights	Y-axis	Z-axis	
"Base" model (stroke _x and stroke _z =0)	M _{base} = 2	244 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 112 approx.		[kg]
Beam (incl. guide rails and rack)	$q_y = 66 \text{ approx.}$	$q_z = 48 \text{ approx.}$	[kg/m]

Formules:

 $Stroke_X$ and $stroke_Z$ [mm]

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ≤	1,600 mm)	
Max. speed	3	2	[m/s]
Max. acceleration	4	3	[m/s ²]
Repeatability	-	±0.1*	[mm]
Beam max. length without joint	12000	12000	[mm]

* Reference value considering a stroke of 1000 mm on Z axis.

Recommended max working conditions					
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PASM 6/	/4 3,000	3,310	1,375	3,585	6,350

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Constructive data	Y-axis	Z-axis
Load-bearing beam (see page TL-12 to TL-15)	Pratyca	Valyda
Rack (hardened, helical teeth, ground: module KSD)	module 4	module 4 [mm ²]
Translation: 4 caged ball roller slides and guide rails	size 30	size 25
Room available for energy chain	175x45	75x45 [mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	76.39 (as an alternative 106.10)	76.39 (as an alternative 106.10) [mm]

Weights	Y-axis	Z-axis	
Base" model (stroke _x and stroke _z =0)		M _{base} = 217 approx.	[kg]
Slide (plates + carriages)		M _{slide} = 105 approx.	[kg]
Beam (incl. guide rails and rack)	$q_y = 60 \text{ approx.}$	$q_z = 39 \text{ approx.}$	[kg/m]

Formules:

PAR 8/3

Y-Axis / P / A / R / P / 280 / Stroke / Length / FRD / ... Z-Axis / P / A / R / P / 200 / Stroke / Length / X / FRD / ...

Ly = Stroke + 1,200Stroke 150 900 150 R15Q Ð F 10 361 135*

* For indication only, variable according to the gearbox chosen

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load on	i axis (Lz ≤	a 1,600 mm)	
Max. speed	2.5	2	[m/s]
Max. acceleration	2.5	3	[m/s ²]
Repeatability	-	±0.25*	[mm]
Beam max. length without joint	12000	12000	[mm]

* Reference value considering a stroke of 1000 mm on Z axis.

100 Kg High Cycle Rate

PC

Low Cycle Rate

🛯 300 Kg

Recommended max working conditions					
Model	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PAR 8/3	1520	1520	670	3100	4740

_{Fz}

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The values shown can be achieved with roller slides with 6 rollers with 6 rollers

suitable for maximum performance (see page TL-63-TL-64).

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page TL-12 to TL-15)	Pratyca	Valyda	
Rack (hardened, helical teeth, ground: module KSD)	module 4	module 3 [r	mm²]
Guide rails	55x25 (hardened and polished)	35x16 (hardened and polished)	
Translation	4 roller slides with 6 rollers Ø62	2 roller slides with 4 rollers Ø40	
Room available for energy chain	175x45	75x45 [r	mm²]
Pinion pitch diameter type RD	76.39 (as an alternative 106.10)	63.66 (as an alternative 89.13) [[mm]

Weights	Y-axis	Z-axis	
"Base" model (stroke _x and stroke _z =0)	M _{base} = 232 ap	prox.	[kg]
Slide (plates + carriages)	M _{slide} = 111 approx.		[kg]
Beam (incl. guide rails and rack)	$q_y = 66 approx.$	$q_z = 35 approx.$	[kg/m]

Formules:

Stroke_x and stroke_z [mm]

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ≤	1,600 mm)	
Max. speed	2.5	2	[m/s]
Max. acceleration	2.5	3	[m/s ²]
Repeatability	-	±0.1*	[mm]
Beam max. length without joint	12000	12000	[mm]

* Reference value considering a stroke of 1000 mm on Z axis.

Recommended max working conditions					
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PASM 8/	3 3,000	3,310	1,375	3,100	4,740

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page TL-12 to TL-15)	Pratyca	Valyda	
Rack (hardened, helical teeth, ground: module KSD)	module 4	module 3	[mm ²]
Translation: 4 caged ball roller slides and guide rails	size 35	size 25	
Room available for energy chain	175x45	75x45	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	76.39 (as an alternative 106.10)	63.66 (as an alternative 89.13)	[mm]

Weights	Y-axis	Z-axis	
Base" model (stroke _x and stroke _z =0)		M _{base} = 220 approx.	[kg]
Slide (plates + carriages)		M _{slide} = 102 approx.	[kg]
Beam (incl. guide rails and rack)	$q_y = 64$ approx.	$q_z = 34 \text{ approx.}$	[kg/m]

Formules:

PAR 8/6

Y-Axis / P / A / R / P / 280 / Stroke / Length / FRD / ... Z-Axis / P / A / R / P / 220 / Stroke / Length / X / FRD / ...

250 Kg High Cycle Rate PC 🛛 600 Kg Low Cycle Rate

* For indication only, variable according to the gearbox chosen

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load on	axis (Lz ≤ 1	,600 mm)	
Max. speed	2	2	[m/s]
Max. acceleration	2	2	[m/s ²]
Repeatability	-	±0.25*	[mm]
Beam max. length without joint	12000	12000	[mm]

* Reference value considering a stroke of 1000 mm on Z axis.

Recom	nended r	nax work	ing condit	ions	
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PAR 8/6	2,430	2,430	1,200	3,220	8,400
T I I					

_{Fz}

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The values shown can be achieved with roller slides with 6 rollers

suitable for maximum performance (see page TL-63-TL-64).

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page TL-12 to TL-15)	Pratyca	Logyca	
Rack (hardened, helical teeth, ground: module KSD)	module 4	module 4	[mm ²]
Guide rails	55x25 (hardened and polished)	55x25 (hardened and polished)	
Translation	4 roller slides with 6 rollers Ø62	2 roller slides with 6 rollers Ø52	
Room available for energy chain	175x45	75x45	[mm ²]
Pinion pitch diameter type RD	76.39 (as an alternative 106.10)	76.39 (as an alternative 106.10)) [mm]

Weights	Y-axis	Z-axis	
"Base" model (stroke _x and stroke _z =0)	$M_{base} = 26$	0 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 122	approx.	[kg]
Beam (incl. guide rails and rack)	q _y = 66 approx.	$q_z = 52 \text{ approx.}$	[kg/m]

Formules:

Stroke_x and stroke_z [mm]

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load on	axis ($Lz \le 1,6$	600 mm)	
Max. speed	2	2	[m/s]
Max. acceleration	2	2	[m/s ²]
Repeatability	-	±0.15*	[mm]
Beam max. length without joint	12000	12000	[mm]

110

20

* Reference value considering a stroke of 1000 mm on Z axis.

220

470

Recom	mended r	nax work	ing condi	tions	
Model	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PASM 8/	6 4,330	4,790	2,090	3,220	8,400

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page TL-12 to TL-15)	Pratyca	Logyca	
Rack (hardened, helical teeth, ground: module KSD)	module 4	module 4	[mm ²]
Translation: 4 caged ball roller slides and guide rails	size 35	size 30	
Room available for energy chain	175x45	75x45	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	76.39 (as an alternative 106.10)	76.39 (as an alternative 89.13)	[mm]

Weights	Y-axis	Z-axis	
Base" model (stroke _x and stroke _z =0)	M _{base} = 234 approx.		[kg]
Slide (plates + carriages)	M _{slide} = 102 approx.		[kg]
Beam (incl. guide rails and rack)	$q_y = 64 \text{ approx.}$	$q_z = 46 \text{ approx.}$	[kg/m]

Formules:

95

Stroke

Stroke + 870

= Z

680

95

PAR 10/6

Y-Axis / P / A / R / P / 360 / Stroke / Length / FRD / ... Z-Axis / P / A / R / P / 220 / Stroke / Length / X / FRD / ...

300 Kg High Cycle Rate PC 🛛 600 Kg Low Cycle Rate

* For indication only, variable according to the gearbox chosen

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ≤	a 1,600 mm)	
Max. speed	2.5	2	[m/s]
Max. acceleration	2	2	[m/s ²]
Repeatability	-	±0.25*	[mm]
Beam max. length without joint	12000	12000	[mm]

* Reference value considering a stroke of 1000 mm on Z axis.

Recom	nended r	nax worki	ing condit	tions	
Model	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PAR 10/	6 2,435	2,435	1,200	3,185	8,400

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The values shown can be achieved with roller slides with 6 rollers

suitable for maximum performance (see page TL-63-TL-64).

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page TL-12 to TL-15)	Solyda	Logyca	
Rack (hardened, helical teeth, ground: module KSD)	module 4	module 4	[mm ²]
Guide rails	55x25 (hardened and polished)	55x25 (hardened and polished)	
Translation	4 roller slides with 6 rollers Ø62	2 roller slides with 6 rollers Ø52	2
Room available for energy chain	175x45	75x45	[mm ²]
Pinion pitch diameter type RD	76.39 (as an alternative 106.10)	76.39 (as an alternative 106.10) [mm]
Rack (hardened, helical teeth, ground: module KSD) Guide rails Translation Room available for energy chain Pinion pitch diameter type RD	module 4 55x25 (hardened and polished) 4 roller slides with 6 rollers Ø62 175x45 76.39 (as an alternative 106.10)	module 4 55x25 (hardened and polished) 2 roller slides with 6 rollers Ø52 75x45 76.39 (as an alternative 106.10	[mm 2 [mm) [mn

Weights	Y-axis	Z-axis	
"Base" model (stroke _x and stroke _z =0)	M _{base} =	283 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 1	22 approx.	[kg]
Beam (incl. guide rails and rack)	q _y = 85 approx.	$q_z = 52 \text{ approx.}$	[kg/m]

Formules:

Stroke_x and stroke_z [mm]

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ≤	1,600 mm)	
Max. speed	2.5	2	[m/s]
Max. acceleration	2	2	[m/s ²]
Repeatability	-	±0.15*	[mm]
Beam max. length without joint	12000	12000	[mm]

* Reference value considering a stroke of 1000 mm on Z axis.

475

Recommended max working conditions					
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PASM10	0/6 4,560	5,050	2,090	3,185	8,400

Fz

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page TL-12 to TL-15)	Solyda	Logyca	
Rack (hardened, helical teeth, ground: module KSD)	module 4	module 4	[mm ²]
Translation: 4 caged ball roller slides and guide rails	size 35	size 30	
Room available for energy chain	175x45	75x45	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	76.39 (as an alternative 106.10)	76.39 (as an alternative 89.13)	[mm]

Weights	Y-axis	Z-axis	
Base" model (stroke _x and stroke _z =0)	M _{bas}	_{se} = 260 approx.	[kg]
Slide (plates + carriages)	M _{slic}	_{de} = 102 approx.	[kg]
Beam (incl. guide rails and rack)	$q_y = 83 \text{ approx.}$	$q_z = 46 \text{ approx.}$	[kg/m]

Formules:

PAR 10/8

Y-Axis / P / A / R / P / 360 / Stroke / Length / FRD / ... Z-Axis / P / A / R / P / 280 / Stroke / Length / X / FRD / ...

 * For indication only, variable according to the gearbox chosen

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load of	n axis (Lz ≤	1,600 mm)	
Max. speed	2	2	[m/s]
Max. acceleration	2	2	[m/s ²]
Repeatability	-	±0.25*	[mm]
Beam max. length without joint	12000	12000	[mm]

* Reference value considering a stroke of 1000 mm on Z axis.

** With vertical positioning of the unit, a partial load capacity compensation is required

PC

Low Cycle Rate

High Cycle Rate

🛛 800 Kg

400 Kg

Recommended max working conditions					
Model	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PAR 10	/8 6,900	7,335	4,590	3,250	11,140

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.

The values shown can be achieved with roller slides with 6 rollers suitable for maximum performance (see page TL-63-TL-64).

componication to required			
Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page TL-12 to TL-15)	Solyda	Pratyca	
Rack (hardened, helical teeth, ground: module KSD)	module 4	module 4	[mm ²]
Guide rails	55x25 (hardened and polished)	55x25 (hardened and polished)	
Translation	4 roller slides with 6 rollers Ø62	4 roller slides with 4 rollers Ø62	2
Room available for energy chain	175x45	75x45	[mm ²]
Pinion pitch diameter type RD	76.39 (as an alternative 106.10)	76.39 (as an alternative 106.10) [mm]

Weights	Y-axis	Z-axis	
"Base" model (stroke _x and stroke _z =0)	M _{base} = 3	00 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 12	2 approx	[kg]
Beam (incl. guide rails and rack)	q _v = 85 approx.	$q_z = 66 approx.$	[kg/m]

Formules:

Actual load: $P_{eff.} = P_{max}$ -(Lz - 1,600)/1,000• q_z < of Pc

Module total weight: $M_{tot}=M_{base}+(q_y \circ stroke_y+q_z \circ stroke_z)/1,000$ Stroke_X and stroke_Z [mm]

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ≤	1,600 mm)	
Max. speed	2	2	[m/s]
Max. acceleration	2	2	[m/s ²]
Repeatability	-	±0.15*	[mm]
Beam max, length without joint	12000	12000	[mm]

280

500

* Reference value considering a stroke of 1000 mm on Z axis.

Mz

F₇

Μv

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground reak and how bedrach actions are the table can be achieved with a ground reak and how bedrach actions.

rack and low-backlash gearboxes.

Constructive data	Y-axis	Z-axis
Load-bearing beam (see page TL-12 to TL-15)	Solyda	Pratyca
Rack (hardened, helical teeth, ground: module KSD)	module 4	module 4 [mm ²]
Translation: 4 caged ball roller slides and guide rails	size 35	size 35
Room available for energy chain	175x45	75x45 [mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	76.39 (as an alternative 106.10)	76.39 (as an alternative 106.10) [mm]

Weights	Y-axis	Z-axis	
Base" model (stroke _x and stroke _z =0)	M _{ba}	_{ase} = 275 approx.	[kg]
Slide (plates + carriages)	M _s	_{lide} = 102 approx.	[kg]
Beam (incl. guide rails and rack)	q _v = 83 approx.	$q_z = 64 \text{ approx.}$	[kg/m]

Formules:

Stroke_x and stroke₇ [mm]

Steel V-shaped guide rails

Material: high-performance alloy steel: R > 900 MPa Induction-hardened and polished. Track hardness > 58 HRC Guide rail 28.6x11 has anti-oxidation coating. Anti-oxidation coating is available for all versions upon request.

x	x 200 x 3.2 x 3.2x	22	x	90 ¹⁰ 07 4,2
V-shaped guide rail 28.6x11	V-shaped guide rail 35x16	⊾ V-s gui	shaped ide rail 55x	:25
Features	28.6x11	35x16	55x25	
Moment of inertia Ix	2,148	7,932	41,906	mm⁴
Moment of inertia ly	14,490	36,405	194,636	mm⁴
Weight	2	3.5	7.8	Kg/m

Machining: drilled guide rails with straight cut

Machining provided for guide rails with no joint. In addition to the code, please state the type of machining required by adding: P_{-} -.... V-shaped guide rails, length L, **not drilled**

P__-....F V-shaped guide rails, length L, drilled

Size	Treatment Ma	x. Length	Р	l.	Α	В	С	Code
28,6x11	hardened anti-oxidation	3980	150	40	11	7	5	P28
35x16	Induction-hardened	4100	100	50	11	7	7.5	P35
55x25	Induction-hardened	4100	150	25	18	11	11.5	P55

Machining: drilled guide rails with 1 bevel and 1 slanting cut

Machining provided for the crop down sizes of guide rail ends with joints. In addition to the code, please state the type of machining required by adding:

P__-....X V-shaped guide rails with 1 slanting cut, length L, not drilled P__-....FX V-shaped guide rails with 1 slanting cut, length L, drilled

*: the first hole is drilled at a height of "Y", subsequent ones at a centre-distance of "P".

Size	Treatment M	ax. Length	Р	Y	I.	Α	В	С	Code
28.6x11	hardened anti-oxidation	3,850	150	50	50	11	7	5	P28
35x16	Induction-hardened	4000	100	50	50	11	7	7.5	P35
55x25	Induction-hardened	3950	150	25	25	18	11	11.5	P55

Machining: drilled guide rails with 2 slanting cuts

Machining provided for the intermediate crop down sizes of guide rail ends with multiple joints. In addition to the code, please state the type of machining required by adding:

 P_{-} -....XX V-shaped guide rails with 2 slanting cuts, length L, not drilled

 $\textbf{P}_{_}$ -.....FXX V-shaped guide rails with 2 slanting cuts, length L, drilled

*: in order to maintain a constant hole pitch, arrange the guide rails so that the length "L" is equal to: n•P + 2•Y

Size Treatme	nt Max. Length	Р	Y	Α	В	С	Code
28,6x11 indurita ant	ioss. 3700	150	50	11	7	5	P28
35x16 Induction-ha	dened 4000	100	50	11	7	7.5	P35
55x25 Induction-ha	dened 3950	150	25	17	11	11.5	P55

EXAMPLE OF ORDER: n° 2 pieces P55-1000FXX

M6

20

V-shaped guide rail assembly inserts

Material: C40 galvanized steel.

A and C: suitable for medium profiles (see pages TL-14 - TL-15)

B and D: suitable for load-bearing profiles (see pages TL-12 to TL-15)

0

*:Special drilling for M8 screws instead of M10 is required.

	Guide rails	Slot side	Screw	Code
Α	35x16/28x11	8	M6x20	209.0298
В	35x16	12.5	M6x25	209.1855
C	* 55x25	8	M8x30	209.0479
D	55x25	12.5	M10x30	209.0480

Racks

Helical teeth

Rack with helical teeth, right-hand 19° 31' 42", pressure angle 20°.

Туре		Rs	Hardness tooth	Quality	Precision
KSD	CK45 norm. induction-hard., teeth and ground sides	> 650 N/mm ²	≥ HRC 56	Q6	0.025mm/300mm
KRD	AISI 9840 alloy steel inducthard., teeth and ground sides	> 900 N/mm ²	HRC 60 c.a.	Q6	0.025mm/300mm

Mod.	Hı	B 1	L	1	J	d	D	С	d1(H7)	S	h1	Р	K	kg	Code
2	24	24	500	62.5	35	7	11	7	6	8	22	125	430	2.2	211.2429
2	24	24	1,000	62.5	35	7	11	7	6	8	22	125	430	4.3	211.2363
3	29	29	500	62.5	35	10	15	9	8	9	26	125	430	3.0	211.2367
3	29	29	1,000	62.5	35	10	15	9	8	9	26	125	430	6.1	211.2351
4	39	39	500	62.5	35	10	15	9	8	12	35	125	430	5.5	211.2366
4	39	39	1,000	62.5	35	10	15	9	8	12	35	125	430	10.9	211.2349

H1 h1 for racks KRD, KSD B1 for racks KRD, KSD

EXEMPLE OF ORDER:

code 211.2367 / KSD

L

——— Tooth and treatment characteristics

Adjusting plates for racks

·

Material: 6082 clear anodized aluminium alloy

Module	D	L	1	h	N° holes	Х	Weight [kg]	Code
2	35	243	126.1	56.35	2	8	0.3	215.0025
2	35	491	126.1	56.35	4	8	0.6	215.0026
2	35	243	126.1	56.35	2	12.5	0.3	215.0027
2	35	491	126.1	56.35	4	12.5	0.6	215.0028
3	35	243	126.1	56.35	2	8	0.3	215.2368
3	35	491	126.1	56.35	4	8	0.6	215.2137
3	35	243	126.1	56.35	2	12.5	0.3	215.2369
3	35	491	126.1	56.35	4	12.5	0.6	215.2281
4	39	243	125.3	57.55	2	12.5	0.3	215.2243
4	39	491	125.3	57.55	4	12.5	0.6	215.2078

Pinion Gears

Helical toothed pinions (19° 31' 42" left-hand). Pressure angle 20°.

Туре	Material	Surface treatment	RS	Quality	Tooth hardness
RD Pinion with ground helical teeth	42CrMo4	temp. induction-hardened	>900 N/mm ²	Q7	HRC 58±2

Helical tooth pinion

mod.	Weight	Z	Øp	Øi avail.	b	X	Code
2	0.2	21	44.56	22	28	56	201.0005
2	0.6	30	63.66	22,30,32	28	56	201.0012
3	0.8	20	63.66	22,25,30,32	28	65	201.0007
3	1.4	28	89.13	25,30,32	28	65	201.0013
4	1.5	18	76.39	32	40	75	201.0009
4	2.8	25	106.10	55	40	80	201.0014

EXEMPLE OF ORDER:

code 201.0007 /RD / 25

Inner diameter (Øi)

Features and treatment

Tecline

Programmable Automatic Rack Lubrication System

Grease is delivered by means of a programmable cartridge (average life: ca. 1 year) (a). The grease is spread evenly on the racks through a felt pinion (1). You will need one kit per rack.

Lubrification assembly kit (no felt pinion, no riscan pipe) 736.0332

Table for selecting maximum operating torque

[1]

Table 1 – With lubrication guaranteed under ideal load conditions, dynamics, (1 m/s) with rigid pinion support [Nm].

116.0051

	Pinion / Racks - Helical tooth Z [n°] Øp [mm] KSD KRD 21 44.56 150 200 30 63.66 205 265 20 63.66 400 500 28 89.13 500 650			
Module	Z [n°]	Øp [mm]	KSD	KRD
2	21	44.56	150	200
2	30	63.66	205	265
2	20	63.66	400	500
3	28	89.13	500	650
4	18	76.39	880	1000
4	25	106.1	1150	1500

Example of simplified calculation

1- Spares

m4 - helical tooth felt pinion

To obtain the working torque value, divide the maximum operating torque (Tab. 1) by the safety factor (Tab. 2). Intermediate values can be adjusted according to the application.

Motion (A) = High shock 1.75 Speed (B) = Low 1	Motion (A)	Speed (B)	Lubrcation (C)	Safety fac. (AxBxC)
Lubrication (C) = Constant 0.9 Rack = module 3 KSD Pinion = $Øp$ 63.66 (400 Nm)	Low shock <i>1.25</i> Medium shock <i>1.5</i>	Low 1 Medium 1.25	Constant 0.9 Daily 1.2	1.13 2.25
Safety factor = A X B X C = 1.575	High shock 1.75	Hign 1.5	Monthly 2.5	6.56 Tab 2

Maximum transmissible torque = Maximum torque 400 / Safety factor 1,575 ≤ 254 Nm

For heavy-duty applications, please ask our technical dept. to carry out the appropriate checks.

Connection shafts

Tecline

The Tecline range includes a series of hollow shafts for connecting the pinions on the systems. We can supply standard connections, according to your application requirements. The complete kit includes all the components needed to make the connection, with shrink-discs and crop down sizes of pins for insertion into the pinions.

Type 1 - Elastic joint with connecting shaft, suitable for low speeds with center-distance and length of up to 2 m.

Type 2 - Stainless steel blade joint connecting shafts, for backlash-free transmissions

Type 3 - Stainless steel blade joint connecting shafts and support bearings, suitable for backlash-free transmissions

R(*)	K	F	Ν	S	Lmax	MTwork [Nm]	Mom. of inertia [kgm ²]	Type 1: Code/L	Type 2: Code/L	Type 3: Code/L
40	67	55	20	200	6,200	20	0.0028 + 0.46 × L. ×10 ⁻⁶	436.0948	436.0957	436.0965
50	81	65	25	235	6,300	35	0.0092 + 0.66 x L. x10 ⁻⁶	436.0949	436.0958	436.0966
50	93	80	25	235	6,300	70	0.0161 + 1.34 x L. x10 ⁻⁶	436.0951	436.0971	436.0974
70	104	95	25	235	6,400	100	0.0293 + 2.93 x L. x10 ⁻⁶	436.0952	436.0960	436.0968
80	126	120	25	250	6,400	190	0.0793 + 4.5 x L. x10 ⁻⁶	436.0955	436.0963	436.0984
90	143	-	-	-	6,500	300	0.1456 + 6.53 x L. x10 ⁻⁶	-	436.0986	436.0987
110	185	-	-	-	6,000	420	0.3499 + 12.3 x L. x10 ⁻⁶	436.0144	436.0145	436.0146

(*) R: Shaft material and diameter are selected in accordance with required speed, centre-distance L, torque and accuracy.

Rollers and V-shaped guide rails 28.6x11 and 35x16

Material: Hardened and burnished C45 steel covering; burnished steel pins and bolts. Rollers with shaped plastic cover are available upon request. Rollers with longer centre-distance L can be supplied.

V-shaped rollers (Guide Rails 28.6 x 11) anti-oxidized version

Shaped rollers with radial bearings with 2RS sealing (medium version).

* IMPORTANT: upon request, spacers can be supplied to increase the centre-distance between the guide rail and the roller supporting surface. In addition to the roller code, please indicate the required centre-distance (L). e.g. 205.0013.L

Version	Туре	Bearing	PR[N]	PA[N]	Speed [m/s]	Weight [kg]	Code
Medium	Conc.	radial bearing	1,400	600	2,5	0.8	205.0013
Medium	Exc.	radial bearing	1,400	600	2,5	0.8	205.0014

V-shaped rollers [rails 35 x 16] integrale

Shaped rollers with two rows of angular contact ball bearings. With bilateral sliding sealing rings. Accuracy class P6. They support loads along the axis of the pin provided Pa eff < 0.4 Pr eff.

* IMPORTANT: upon request, spacers can be supplied to increase the centre-distance between the guide rail and the roller supporting surface. In addition to the roller code, please indicate the required centre-distance (L). e.g. 205.0011.L

Туре	Bearing	PR[N]	PA[N]	Speed [m/s]	Weight [kg]	Code
Conc.	angular contact	4,500	1,800	2,5	1	205.0011
Exc.	angular contact	4,500	1,800	2,5	1	205.0012

Roller slides

Ø40 roller slides with 2 or 3 rollers, aluminium alloy castings (Rs=280 N/mm2). Ø30, Ø40, Ø52 and Ø62 roller slides with 4 or 6 rollers, extruded aluminium alloy (Rs=310 N/mm2). Alloy steel pins (Rs=800 N/mm2) Rollers with double rows of angular contact ball bearings, long-life.

Roller slides Ø40 (V-shaped 35x16) - Ø30 (guide rail 28.6x11)

Roller slides Ø52 and Ø62 (V-shaped 55x25)

Tecline

	Sliding washer	± 1,5	٥
4	110 86	$56 \qquad A \qquad 18 \qquad 70 \qquad 7$	
		39,71	Ø 50

Important: remove the space washers to enable self-alignment of the roller slide

	Α	Weight [kg]	Code
Roller slide with concentric pin	75	1.8	204.0052
Roller slide with excentric pin (±1 mm)	75	1.8	204.0053
Roller slide with concentric pin	50	1.4	204.0054
Roller slide with excentric pin (±1 mm)	50	1.4	204.0055

Spare parts	Α	Code
Complete body with rollers		204.0050
Concentric pin	75	236.0010
Excentric pin (±1 mm)	75	236.0011
Concentric pin	50	236.0014
Excentric pin (±1 mm)	50	236.0015

2 Roller slides Ø40 for V-shaped guide rails 35x16

Please follow the diagrams below to ensure correct assembly. To make up for the tolerances in the profile shapes, use pins to lock carriages with eccentric rollers after placing them in the appropriate position. (With the eccentric pins in the neutral position).

Roller side 1	Roller side 2	Specification	Weight [Kg]	Code
Concentric	Concentric	2-rollers carriage Ø40 - concentric	1	204.2072
Excentric	Concentric	2-rollers carriage Ø40 - 1 exc. side 1	1	204.2071
Concentric	Excentric	2-rollers carriage Ø40 - 1 exc. side 2	1	204.0004
Excentric	Excentric	2-rollers carriage Ø40 - excentric	1	204.0019

Application diagram common to 2-roller slides

3-Roller slides Ø 40 for V-shaped guide rails 35x16

Please follow the diagrams below to ensure correct assembly. To make up for tolerances in the profile shapes, use pins to lock carriages with eccentric rollers after placing them in the appropriate position. (With the eccentric pins in the neutral position).

ca.47

38 ω 51,

Rollers side 1	Rollers side 2	Specification	Weight [kg]	Code
1 concentric	2 concentric	3-rollers carriage Ø40 - concentric	1.3	204.1579
1 eccentric	2 concentric	3-rollers carriage Ø40 - 1 exc. side 1	1.3	204.0474
2 concentric	1 concentric	3-rollers carriage Ø40 - concentric	1.3	204.2302
2 concentric	1eccentric	3-rollers carriage Ø40 - 1 exc. side 2	1.3	204.0475

Application diagram common to 3-roller slides

Tilting roller slides with 4 rollers Ø40 for V-shaped guide rails 35x16

Use the roller slide eccentric pin to adjust the backlash along the plane between the guide rails.tino.

Important: remove the spacer washers to enable self-alignment of the roller slide

	Α	Weight [kg]	Code	Spare parts	Α	(
Slide with eccentric stud (±1 mm)	75	2.2	204.0016	Complete body with rollers		20
Slide with eccentric stud (±1 mm)	50	1.8	204.0033	Eccentric stud (±1 mm)	75	23
All pipe are acceptric, but are made as	noontri	a by incorting t	he sis is the	Eccentric stud (±1 mm)	50	23

All pins are eccentric, but are made concentric by inserting the pin in the specific hole on the plate, in order to determine the required preload.

TL-62	

Fixed 4-roller slide Ø40 for V-shaped guide rails V 35x16

Use the roller slide eccentric stud to adjust the backlash along the plane between the guide rails. Important: machine the pin clamping plate as shown in Fig. A Important: remove the space washers to enable self-alignment of the В roller slide Sliding washers 4

	Α	Code
R. slide L=370 complete with exc. pin $(\pm 1 \text{ mm})$	75	204.0018
R. slide L=600 complete with exc. pin $(\pm 1 \text{ mm})$	75	204.0028
R. slide L=370 complete with exc. pin $(\pm 1 \text{ mm})$	50	204.0031
R. slide L=600 complete with exc. pin (\pm 1 mm)	50	204.0035

R. slide spare parts (2)) B	С	D	E	Code
Roller slide L=370	370	320	276	180	204.0005
Roller slide L=600	600	550	506	410	204.0026
Pin spare parts (1))	Α	Weig	ht [kg]	Code
Pin spare parts (1) Eccentric stud (± 1 n	nm)	<mark>А</mark> 75	Weig 4	<mark>ht [kg]</mark> .1	Code 236.0011

E type roller slides (roller Ø52) and F type (roller Ø62) for V-shaped guide rails 55x25

4-Stiff Rollers slide. Suitable for mounting stud: Type 7-8 Use the roller slide eccentric stud to adjust the backlash along the plane between the guide rails. Important: machine the pin clamping plate as shown in Fig. A

Ø Rollers		Rif. A
Rollers Ø52		71.75
Rollers Ø62		78.85
Technical caracteristics	Ø52	Ø62
N° rollers	4	4
Weight [kg.]	4.6	5.2
Spare parts code	204.1518	204.1519

inverted roller position see page TL-63

Type G roller slides (roller Ø52) and H type (roller Ø62) for V-shaped guide rails 55x25

Tilting 4-roller slides Suitable for assembly pins: **Type 9** Use the roller slide eccentric pin to adjust the backlash along the plane between the guide rails.

Ø Rollers		Rif. A
Roller Ø52		71.75
Roller Ø62		78.85
Technical caracteristics	Ø52	Ø62
N° roller	4	4
Weight [kg.]	3,2	3.8
Spare parts code	204.1520	204,1521

I-type roller slides (roller Ø52) and L-type (roller Ø62) for V-shaped guide rails V 55x25

Tilting 4-roller slides Suitable for assembly pins: **Type 9** Use the roller slide eccentric pin to adjust the backlash along the plane between the guide rails.

Ø Roller	Rif. A
Roller Ø52	71.75
Roller Ø62	78.85

Technical caracteristics	Ø52	Ø62
N° rollers	6	6
Weight [kg.]	4.9	5.9
Spare parts code	204.1522	204.1523

K version inverted roller position see page TL-63

P-type roller slides (rollers Ø52) and Q-type (rollers Ø62) for V-shaped guide rails 55x25

Fixed 4-roller slides Suitable for assembly pins: **Type 10-11-12** Use the roller slide eccentric pin to adjust the backlash along the plane between the guide rails.

K Version inverted roller position see page TL-63

Technical caracteristics	Ø52	Ø62
N° rollers	6	6
Weight [kg.]	4.9	5.9
Spare parts code	204.2086	204.2283

Spare roller with stud

Make sure that all the components are locked in place with the appropriate screws. The recommended tightening torque for pin locking screws and nuts is 50 Nm.

Max. load factors for induction-hardened guides

Roller	Cw [N]	C0w[N]	Fr amm.[N]	Max. S.
Ø30	5,100	3,100	1,350	7 m/s
Ø40	10,000	6,300	2,500	7 m/s
Ø52	16,700	10,700	4,250	6 m/s
Ø62	21,500	14,800	5,300	5 m/s

Spare roller with pin	Weight [kg]	Code
Ø30 Concentric	0.02	406.0056
Ø40 Concentric	0.22	205.0464
Ø40 Excentric (± 0.75 mm)	0.25	205.0463
Ø52 Concentric	0.4	205.0163
Ø62 Concentric	0.55	205.0165

Assembly Studs

Material: burnished steel (Rs=800 N/mm2). Special variants upon request. AISI 303 stainless steel versions are available upon request. Types 0-7-8-9 are complete with self-lubricating bushings to make roller slide self-adjustments easier.

Type 0 assembly pins suitable for roller slide Ø30 and Ø40

Important: machine the pin clamping plate as shown in Fig. A

Important: remove the spacer washers to enable self-alignment of the roller slide

Technical caracteristics	Α	
Weight [kg.]		1.1 approx.
Eccentric code (± 0,75 mm)	75	236.0011
Eccentric code (± 0,75 mm)	50	236.0015

Type 7 assembly pins suitable for roller slide E-F Important: machine the pin clamping plate as shown in Fig. A n°3 ø8 18 68 62,5 Ø6H7 1,5 1,5 Ø45 <u>M16</u> ø25 ø50 ø40 ø30 Ø30 Ø38±0,02 6 Т 80 12 Dett. "1" Ø30 H Important: remove the spacer washers to enable self-alignment of the perni conc. roller slide **Technical caracteristics** perni ecc. Fig. A 1.1 approx. Weight [kg.] Ø40 Eccentric code (± 1 mm) 236.1689 5

Assembly pins type 8 suitable for carriage E-F

Important: remove the spacer washers to enable self-alignment of the

Technical caracteristics	Weight [kg.]	1.8 approx.
	Technical caracteristics	1.9 000101

Type 9 assembly pins suitable for tilting roller slides G-H / I-L

Important: remove the spacer washers to enable self-alignment of the roller slide

Technical caracteristics	
Weight [kg.]	2 approx.
Concentric code	236.2076
Excentric code (± 1,5 mm)	236.2079

Type 10-11-12 assembly pins suitable for tilting roller slides P-Q

Тур	e A	В	С	Weight [kg]	Conc.code	Exc. code
						(± 1.5 mm)
10	95	73	35	2		236.2083
11	87	65	27	1.8	236.2088	236.2089

Order code table for roller slides and pins

	5										
		Roller	sl. E	F	G	н	I	L	Р	Q	
	<u>,</u>	Ø rolle	r 52	62	52	62	52	62	52	62	
68 69,5	₽	con.	-	-	-	-	-	-	-	-	
	7	exc.	204.1344	204.1348	-	-	-	-	-	-	
95 42,5	8	con.	-	-	-	-	-	-	-	-	
		exc.	204.1345	204.1349	-	-	-	-	-	-	
(95) 62	9	con.	-	-	204.2092	204.2093	204.2094	204.2095	-	-	
		exc.	-	-	204.2102	204.2103	204.2104	204.2105	-	-	
(95) 62	10	con.	-	-	-	-	-	-	204.2096	204.2097	
		exc.	-	-	-	-	-	-	204.2106	204.2107	
(87) 62	11	con.	-	-	-	-	-	-	204.2098	204.2099	
		exc.	-	-	-	-	-	-	204.2108	204.2109	
	12	con.	-	-	-	-	-	-	204.2100	204.2101	
		exc.	-	-	-	-	-	-	204.2110	204.2111	

Assembly of standard carriages / K version carriages

IMPORTANT: for applications with high projecting loads, the rollers of the slides must be adjusted so that the load is supported by the maximum possible number of rollers. If this means arranging the rollers symmetrically with respect to the standard roller slide version, please add the letter K at the end of the code when filling in the order form. However, the roller assembly can also be inverted at a later date, by disassembling the pins and rollers and then **reassembling them in the opposite way.**

Anti-drop device with pneumatic brake system

Ant-droop devices, available in a range of sizes, are supplied according to the type of application. For instance, they can act as a mechanical stop to block the free-falling load at any stroke point, or as a lock in static conditions at any position. Two-way blocking occurs following an unexpected pressure drop.

A mechanical release system is available on request (patented). Catalogue available upon request.

The kit includes: braking device and rod with relative supports, micro-switch. Solenoid valve available upon request.

Operating pressure 3-6 Bar. With no pressure = locked.

1- Static rod blocking device

Тур	be Codice	Rod Blocking force [N]	Stroke [mm]
Α	236.0018	/ 1,200	/
Α	236.0018	/ 1,900	/
Α	236.0018	/ 3,000	/
Α	236.0018	/ 5,400	/
Α	236.0018	/ 7,500	/
Α	236.0018	/ 12,000	/

Emergency brake for free-falling load

1- Dynamic rod blocking device										
Туре	Code	Rod Blocking force [N]	Stroke [mm]							
В	236.0019	/ 3,000	/							
В	236.0019	/ 5.400	/							
в	236.0019	/ 7,500	/							
В	236.0019	/ 12,000	/							

Lock-pin (stopper cylinder)

Lock-pins are available in two sizes to block the vertical axes in position to allow horizontal movements during maintenance. The lock-pins comprise the use of the through rod. Select the size according to the load. The kit includes: drilled plate for rod, stopper cylinder, micro-switch and 2 magnetic gearboxes. Max. operating pressure: 10 bar.

Special plate on request G Micro - switch C + corsa Drilled plate

2- Accessory: drilled plate for rod										
ØD Rod	Base	Width	Thickness							
20	60	100	39							
32	60	100	39							

-	Lock-pin	

1

ØD Rod	Stroke	С	Е	F	G	Kit Code
20	20	60.5	50	38	16	236.0021
32	30	-	-	-	-	236.0022

Tecline

Profile anchor brackets

Material: alluminium alloy (Rs=310 N/mm²).

Profile	Α	L	т	d	н	Р	С	F	В	Μ	single code	double code
E01-4 ; E01-5	30	50	25	9	25	9.5	18	12	22	69/114	415.0772	415.0773
MA1-5	25	50	25	6.7	27	6.8	20.6	10	18	120	415.0769	415.0764
STATYCA	30	90	50	11	40	11	28.3	14	25	198	415.0767	415.0762
VALYDA horizontal	30	90	50	11	40	11	28.3	14	25	228	415.0767	415.0762
VALYDA vertical	30	90	50	11	50	11	43.1	14	25	148	215.0042	215.0041
LOGYCA	30	90	50	11	40	11	28.3	14	25	248	415.0767	415.0762
PRATYCA horizontal	30	90	50	11	20	11	11.3	14	25	308	415.0768	415.0763
PRATYCA vertical	30	90	50	11	25	11	13.5	14	25	198	-	915.1174
SOLYDA horizontal	30	90	50	11	20	11	11.3	14	25	308	415.0768	415.0763
SOLYDA vertical	30	90	50	11	25	11	13.5	14	25	198	-	915.1174
Threaded hole bracket

Threaded hole bracket for mounting additional equipment. Material: 6060 clear anodized aluminium alloy.

, D ,	•		Series A	30-7
		U V	+	

Series A30-8/30-6

Α	В	С	D	Е	S	Tx t	Μ	Code	Ø	Code
45	45	20	25	25	5	15 x 6.5	M6	A30-86	6	A30-76
35	25	20	19	15	5	20 x 6.5	M4	A30-64	4	A30-54
35	25	20	19	15	5	20 x 6.5	M5	A30-65	5	A30-55
35	25	20	19	15	5	20 x 6.5	M6	A30-66	6	A30-56
25	25	15	14	15	4	13.5 x 5.5	М3	B30-63	3	B30-53
25	25	15	14	15	4	13.5 x 5.5	M4	B30-64	4	B30-54
25	25	15	14	15	4	13.5 x 5.5	M5	B30-65	5	B30-55
25	25	15	14	15	4	13.5 x 5.5	M6	B30-66	6	B30-56

Bracket for mounting additional equipment

L-shaped bracket for mounting additional equipment and improving the rigidity of frames made with profiles.

Material: 6060 clear anodized aluminium alloy.

Α	В	С	D	Е	Ø	Μ	Code
60	20	8	45	-	6,5	-	B30-10
60	20	8	45	-	6.5	M6	B30-20
60	30	8	45	-	9	-	A30-10
60	30	8	45	-	9	M6	A30-20
38	30	8	25	-	9	-	A30-00
31	20	6	20	-	6.5	-	C30-00

Bracket for mounting additional profiles

Material: 6060 clear anodized aluminium alloy.

Α	В	С	D	Е	Ø	Μ	Code
38	80	8	25	50	9	-	A30-02
31	60	6	20	40	6.5	-	C30-02

Bracket for mounting additional profiles

Material: 6060 clear anodized aluminium alloy.

The end caps for STATYCA, VALYDA, and LOGYCA (supplied with 4 bushings 207.1892 thr. M20/6) are fixed to the profiles using the 4 holes provided in the centre that must be M20 threaded. PRATYCA and SOLYDA profiles must instead be M6 drilled and threaded as in the areas indicted in the drawing (in this case the end caps are supplied without any bushings). Please specify whether profiles will require end caps.

Material: black polyethylene, 6 mm thick. End caps in 6 mm-thick aluminium alloy are available upon request.

Bearing profile	L	h	Α	В	С	D	Code
202.1753 - STATYCA	170	120	100	50	-	-	212.1774
202.1146 - VALYDA	200	120	100	50	-	-	212.1704
202.2184 - LOGYCA	220	120	150	50	-	-	212.2279
202.1147 - PRATYCA	280	170	254	115	195.5	39	212.1705
202.0342 - SOLYDA	360	200	328	141	265	40	212.1706

The end caps for small and medium profiles (E40.60 type excluded wich instad has screws) have no screws or bushes and are fitted simply by exerting moderate pressure on the end of the profile. Material: black polyethylene, approx. 5 mm thick.

Profile	L	h	Code
E01-4	90	90	E40-40
E01-5	180	90	E40-60
MA1-5	100	100	A40-50

Cams and cam-holders for micro-switches

Long cams (type B)

Cams in accordance with DIN 69639 except when marked "#". Material: steel with hardened and ground surface.

Α	В	Code
25	59	211.2132
40	74	211.2133
63	97	211.2134
80 #	114	211.2135
100	134	211.2136

Short cams (type A)

Cams in accordance with DIN 69639 Material: steel with hardened and ground surface.

С	D	Code
0	25	211.2128
4	29	211.2129
10	35	211.2130
16	41	211.2131

Cam-holder guide rails

Cams in accordance with DIN 69638 Material: 6060 clear anodized aluminium alloy.

n°	В	Α	L	Code
3	3	36	3,000	202.2138
4	5.5	53	3,000	202.2139
6	5.5	77	3,000	202.2140
8	5.5	101	3,000	202.2141

Threaded inserts for small and medium profiles

Inserts for base profiles 30/45/50/60

Material: galvanised steel.

Important: inserts must be inserted into the T-slots before assembling.

Thread	A-B-C Code	Thread	A-B-C Code
M3	B32-30	M4	A32-40
M4	B32-40	M5	A32-50
M5	B32-50	M6	A32-60
M6	B32-60	M8	A32-80
Spring	211.1077	Spring	211.1061

Square nuts

Also suitable for profiles **STATYCA**, **VALYDA**, **LOGYCA**, **PRATYCA** and **SOLYDA**. Material: galvanised steel.

Important: inserts must be inserted into the longitudinal slots before assembling.

Thread	Code 18x18	Code 20x20
M4	209.0031	209.0023
M5	209.0032	209.0019
M6	209.0033	209.1202
M8	209.0034	209.0467

Plastic compound spring for vertical positioning of insert.

Spring	Code
Suitable for all inserts 18x18	101.0732

Threaded inserts for load-bearing profiles

Frontally insertable alignment plates

Material: galvanised steel.

Important: inserts must be inserted into the T-slots before assembling.

Thread	Code
M5	215.1768
M6	215.1769
M8	215.1770
M10	215.2124

Frontally insertable alignment plates

Material: galvanised steel.

Thread	Code
M5	215.1771
M6	215.1772
M8	215.1773
M10	215.2125

Threaded inserts

Also suitable for base-50 profiles, except A32-91 insert. Material: galvanised steel.

Thread	N. holes	L	Code
M10	1	40	215.0477
M12	1	40	209.1281
M10	1	20	209.1277
M10	2	80	209.1776
M10	3	150	209.1777
M10	4	200	209.1778
M10	5	250	209.1779
M10	6	300	209.1780
M10	7	350	209.1781

Dovetail inserts for VALYDA profile

Material: burnished C40.

Important: inserts must be inserted into the longitudinal slots before assembling. Special sizes are available upon request.

F	G	L	N° holes	M 8	M10	F	G	L L	N° holes	Μ
25	-	50	1	214.0388	214.0394	25	-	50	1	214.
25	50	100	2	214.0389	214.0395	25	50	100	2	214.
25	50	200	4	214.0391	214.0398	25	50	200	4	214.
25	50	300	6	214.0393	214.0400	25	50	300	6	214.

Reader system with magnetic scale and sensor

The magnetic scale is applied to the body of the module using a supporting and protective profile.

Precision from \pm 0.015 to \pm 0,05 mm

Index

Code	page	Code	page	Code	page	Code	page	Code	page	Code pa	age
1010732	TL-75	2041348	TL-68	2091779	TL-76	2152243	TL-57	A30-10	TL-71	PAR 8/3	TL-46
1010744	TL-61	2041349	TL-68	2091780	TL-76	2152281	TL-57	A30-20	TL-71	PAR 8/6	TL-48
1011079	TL-61	2041518	TL-63	2091781	TL-76	2152368	TL-57	A30-30	TL-72	PAS 1	TL-17
1160051	TL-61	2041519	TL-63	2091855	TL -55	2152369	TL-57	A30-40	TL-72	PAS 1/05	TI -33
1160050	TL-61	2041520	TL -64	2111061	TL -75	2360010	TL-61	A30-54	TI -71	PASM 10	TL -31
7360332	TL-61	2041520		2111001	TL -75	2360011	TL-61	A30-55	TI -71	PASM 10/6	TL -51
2010005	TL-01	2041521	TL-04	211077		2360011	TL-61	A30-56	TL 71		
2010005	TL-57	2041522		2112120	TL 74	2300014		A30-30	TL 71	PASINI 10/0	TL-00
2010007	TL-57	2041523	TL-04	2112129	1L-74	2300015		A30-64		PASIVI Z	TL-19
2010009	TL-57	2041579	TL-62	2112130	TL-74	2300010	TL-09	A30-05		PASIVI 2/1	TL-35
2010012	IL-57	2042071	TL-61	2112131	1L-74	2360019	TL-69	A30-66	1L-/1	PASM 3	TL-21
2010013	1L-57	2042072	IL-61	2112132	IL-74	2360021	TL-69	A30-76	1L-/1	PASM 3/1	TL-37
2010014	TL-57	2042086	TL-65	2112133	IL-74	2360022	IL-69	A30-86	IL-/1	PASM 4	TL-23
2010015	TL-57	2042092	TL-68	2112134	TL-74	2361689	TL-66	A32-40	TL-77	PASM 4/1	TL-39
LOGYCA		2042093	TL-68	2112135	TL-74	2361691	TL-67	A32-50	TL-77	PASM 5	TL-25
2022138	TL-74	2042094	TL-68	2112136	TL-74	2362076	TL-67	A32-80	TL-77	PASM 5/2	TL-41
2022139	TL-74	2042095	TL-68	2112349	TL-56	2362079	TL-67	A32-91	TL-76	PASM 6	TL-27
2022140	TL-74	2042096	TL-68	2112351	TL-56	2362082	TL-67	A40-50	TL-73	PASM 6/2	TL-43
2022141	TL-74	2042097	TL-68	2112363	TL-56	2362083	TL-67	B20-10	TL-71	PASM 6/4	TL-45
P28	TL-54	2042098	TL-68	2112366	TL-56	2362088	TL-67	B20-20	TL-71	PASM 8	TL-29
P35	TL-54	2042099	TL-68	2112367	TL-56	2362089	TL-67	B30-30	TL-72	PASM 8/3	TL-47
P55	TL-54	2042100	TL-68	2112429	TL-56	2362090	TL-67	B30-40	TL-72	PASM 8/6	TL-49
P28.F	TL-54	2042101	TL-68	2121704	TL-73	2362091	TL-67	B30-53	TL-71		
P35 5	TI -54	2042102	TI -68	2121705	TI -73	4060056	TL-68	B30-54	TL-71		
P55 5	TI -54	2042103	TL-68	2121706	TI -73	4150762	TI -70	B30-55	TL-71		
P28 v	TL -54	20/210/	TL -68	2121774	TL -73	4150763	TL-70	B30-56	TI -71		
D25 v		2042104	TL-68	2121714	TL 73	4150764	TL -70	B30-63	TL -71		
Г 33.X D <i>EE</i>	TL-54	2042100		2122213	TL-73	4150767		B30-64	TL-71		
F00.X	TL-04	2042100		2140300	TL 77	4150707	TL 70	B30-04			
P28.FX	1L-54	2042107	TL-08	2140309	TL-//	4150700	TL-70	B30-05			
P35.FX	1L-54	2042108	1L-68	2140391	1L-//	4150769	TL-70	B30-66			
Р55.ғх	IL-54	2042109	TL-68	2140393	1L-//	4150772	TL-70	B32-30	1L-75		
P28.xx	IL-55	2042110	1L-68	2140394	IL-//	4150773	1L-70	B32-40	IL-75		
P35.xx	TL-55	2042111	TL-68	2140395	TL-77	4360144	IL-59	B32-50	IL-75		
P55.xx	TL-55	2042283	TL-65	2140398	TL-77	4360145	TL-59	B32-60	IL-75		
P28.fxx	TL-55	2042302	TL-62	2140400	TL-77	4360146	TL-59	C30-02	TL-72		
P35.fxx	TL-55	2050011	TL-60	2140430	TL-77	4360948	TL-59	E01-4 (90x90) TL-12		
P55.FXX	TL-55	2050012	TL-60	2140431	TL-77	4360949	TL-59	E01-5 (90x18	30) TL-13		
2040004	TL-61	2050013	TL-60	2140433	TL-77	4360951	TL-59	E40-40	TL-73		
2040005	TL-63	2050014	TL-60	2140435	TL-77	4360952	TL-59	MA1-5	TL-12		
2040013	TL-62	2050053	TL-61	2150025	TL-57	4360955	TL-59	PAR 1	TL-16		
2040016	TL-62	2050163	TL-65	2150026	TL-57	4360957	TL-59	PAR 1/05	TL-32		
2040018	TL-63	2050165	TL-65	2150027	TL-57	4360958	TL-59	PAR 10	TL-30		
2040019	TL-61	2050463	TL-65	2150028	TL-57	4360960	TL-59	PAR 10/6	TL-50		
2040026	TL-63	2050464	TL-65	2150041	TL-70	4360963	TL-59	PAR 10/8	TL-52		
2040028	TL-63	2090019	TL-75	2150042	TL-70	4360965	TL-59	PAR 2	TL-18		
2040031	TL-63	2090023	TL-75	2150477	TL-76	4360966	TL-59	PAR 2/1	TI -34		
2040033	TL-62	2090298	TL-55	2151768	TI -76	4360968	TI -59	PAR 3	TI -20		
2040035	TL-63	2090467	TL -75	2151769	TI -76	4360971	TI -59	PAR 3/1	TL-36		
2040050	TL-61	2000107	TL-55	2151770	TL-76	4360974	TI -59		TL-22		
2040050	TL-01	2030473	TL-55	2151770	TL 76	43600974			TL-22		
2040054	TL-01	2090400	TI 75	2101//1	TL 70	4360000	TI 50	глк 4/1 DAD <i>г</i>	TL-30		
2040054	1L-01	2091202	1L-/5	2101//2	1L-/0	4300900	TL-09		1L-24		
2040055	TL-61	2091277	1L-/6	2151//3	11-76	4300987	TL-59	PAR 5/2	1L-40		
2040474	1L-62	2091281	1L-76	2152078	1L-57	7400568	1L-12	PAR 6	1L-26		
2040475	TL-62	2091776	I'L-76	2152124	۲L-76	9151174	1L-70	PAR 6/2	TL-40		
2041344	TL-68	2091777	TL-76	2152125	TL-76	A30-00	۲L-71	PAR 6/4	TL-44		
2041345	TL-68	2091778	TL-76	2152137	TL-57	A30-02	TL-72	PAR 8	TL-28		

Via Trieste 26 I-20871 Vimercate (MB) Phone: (+39) 039 62 59 1 www.rollon.it - infocom@rollon.it

Branches:

ROLLON GmbH - GERMANY

Bonner Strasse 317-319 D-40589 Düsseldorf Phone: (+49) 211 95 747 0 www.rollon.de - info@rollon.de

ROLLON S.A.R.L. - FRANCE

ROLLON Ltd - CHINA

Les Jardins d'Eole, 2 allée des Séquoias F-69760 Limonest Phone: (+33) (0) 4 74 71 93 30 www.rollon.fr - infocom@rollon.fr

2/F Central Plaza, No. 227 North Huang Pi Road, China, Shanghai, 200003 Phone: (+86) 021 2316 5336 www.rollon.cn.com - info@rollon.cn.com

ROLLON B.V. - NETHERLANDS

Ringbaan Zuid 8 6905 DB Zevenaar Phone: (+31) 316 581 999 www.rollon.nl - info@rollon.nl

ROLLON Corporation - USA

101 Bilby Road. Suite B Hackettstown, NJ 07840 Phone: (+1) 973 300 5492 www.rolloncorp.com - info@rolloncorp.com

ROLLON India Pvt. Ltd. - INDIA 🛛 🖊 🔻

1st floor, Regus Gem Business Centre, 26/1 Hosur Road, Bommanahalli, Bangalore 560068 Phone: (+91) 80 67027066 www.rollonindia.in - info@rollonindia.in Rollon Branches & Rep. Offices Distributors

Rep. Offices:

ROLLON S.p.A RUSSIA	~	
---------------------	----------	--

117105, Moscow, Varshavskoye shosse 17, building 1, office 207. Phone: +7 (495) 508-10-70 www.rollon.ru - info@rollon.ru

ROLLON Ltd - UK

The Works 6 West Street Olney Buckinghamshire, United Kingdom, MK46 5 HR Phone: +44 (0) 1234964024 www.rollon.uk.com - info@rollon.uk.com

Regional Manager:

Itaim Bibi - 04534-011, São Paulo, BRASIL Phone: +55 (11) 3198 3645 www.rollonbrasil.com.br - info@rollonbrasil.com

ALT2 GC EN 01/17

Consult the other ranges of products

All addresses of our global sales partners can also be found at www.rollon.com

Changes and errors excepted. The text and images may be used only with our permission.

