ROLLON
 LinearEvolution

Tecline

Our tecline linear system range is suitable for the handling of loads from 10 up to 1000 kg , by manufaturing one or more axis systems according to the customer requirements.

Our main application fields are: robotics, palletization, production line, logistics and manufacturing machines with Cartesian axis movements.

Our products stand out for their:

- easy and quick assembly
- high quality and competitive performances (profiles up to 12 m)
- reduced and simplified maintenance
\square wide range of integrated solutions
- possibility of customised solutions
- constant technical support and CAD drawings available

Our Tecline linears strong points are:

- Solid beams obtained from aluminium alloy extruded profiles

High-performance aluminium casting alloy plate and preset for tool assembly

- Adapting plate suitable for any commercial available gearboxes
- Fixed and oscillating roller slides, which can be adjusted through an eccentric bushing
- Without play and sealed rollers with a "for life" lubricating system
- Induction hardened and machined strong V-shaped steel guide rails

Adjustable limit stops provided with rubber buffers

- Wide range of accessories for 3 or more axis linears

Linear systems with rack drive and components

This document replaces all previous editions. Due to the constant progress of our research we reserve the right to modify drawings or features without notice. No part of this catalogue may be reproduced without written permission of the copyright owner.
All rights reserved. This catalogue has been accurately checked before publishing. However, we disclaim all responsibility in case of errors and omissions.

INTRODUCTION

Construction characteristics	$\mathrm{TL}-2$
Instructions for correct assembly	$\mathrm{TL}-3$
Accuracy - Lubrication	$\mathrm{TL}-4$
Standard assembly solutions	$\mathrm{TL}-5$
Sizing template	$\mathrm{TL}-6$
Technical data sheet	$\mathrm{TL}-7$
Preliminary selection table (1-2-3 axes)	
Special applications with standard modules	$\mathrm{TL-9}$
Assembly positions and load direction	$\mathrm{TL}-10$

PROFILES
TL-12

SINGLE AXES

	PAR 1 - PAS 1	(180)	TL-16
	PAR 2 - PASM 2	(170)	TL-18
	PAR 3 - PASM 3	(200)	TL-20
	PAR 4 - PASM 4	(200)	TL-22
	PAR 5 - PASM 5	(220)	TL-24
	PAR 6 - PASM 6	(280)	TL-26
	PAR 8 - PASM 8	(280)	TL-28
	PAR10-PASM 10	(360)	TL-30

DOUBLE AXES

	PAR 1/05-PAS 1/05	(180/90)	TL-32
	PAR 2/1-PASM $2 / 1$	(170/90)	TL-34
	PAR 3/1-PASM 3/1	(200/100)	TL-36
	PAR 4/1 - PASM 4/1	(200/100)	TL-38
	PAR 5/2-PASM 5/2	(220/170)	TL-40
	PAR 6/2 - PASM 6/2	(280/200)	TL-42
	PAR 6/4 - PASM 6/4	(280/200)	TL-44
	PAR 8/3-PASM 8/3	(280/200)	TL-46
	PAR 8/6-PASM 8/6	(280/220)	TL-48
	PAR 10/6-PASM 10/6	(360/220)	TL-50
	PAR 10/8-PASM 10/8	(360/280)	TL-52

COMPONENTS

STEEL V-SHAPED GUIDE RAILS	TL-54
RACKS	TL-56
Adjusting plates for racks	TL-57
PINION GEARS	TL-57
Programmable Automatic Rack Lubrication System	TL-58
Table for selecting maximum operating torque	TL-58
CONNECTION SHAFTS	TL-59
ROLLERS FOR V-SHAPED GUIDE RAILS 28.6X11 AND 35X16	TL-60
ROLLER SLIDES	TL-61
Assembly Studs	TL-66
Order code table for roller slides and pins	TL-68
ANTI-DROP SYSTEM	TL-69
Lock-pin (shock absorbers)	TL-69

ACCESSORIES

Profile anchor brackets

TL-70

L-shaped brackets	TL-71

End caps for profiles TL-73
Cams and cam-holders for micro-switches TL-74
Threaded inserts for small and medium profiles TL-75
Threaded inserts for load-bearing profiles TL-76
Index TL-78

Multiple-axis linear modules with rack drive

TECLINE linear systems are designed for ROBOTS with one, two or three CARTESIAN AXES and comprise Rollon linear modules with rack drive, in different sizes depending on the load to be translated. Modules with rack drive are suitable for transfer and positioning systems with an extremely low repeatability error and/or for dynamic performance and heavy loads.

They can be equipped / supplied with gearboxes.

Whatever the application, the configuration can be adapted using the complete order code, within an extensive range of components (energy-chains, guides, micro-switches, lubrication units, etc.) and accessories. Our technical dept. is available to provide assistance with code setting.

Beams

Manufactured with Rollon s extruded and anodised (*) profiles, made of hardened and tempered aluminium alloy Al Mg Si 0.5 , quality F25, Rm $245 \mathrm{~N} / \mathrm{mm}$, tolerance according to UNI EN 755-9. Profiles are specifically designed by Rollon to create rigid and light structures, suitable for manufacturing linear transfer machines. The guide and rack housings on modules equipped with ball roller slides (PASM family) are milled.
${ }^{(*)}$ Valyda and Logyca profiles are anodised up to 12 m . Pratyca and Solyda are anodised upon request

Modules can be supplied with head-pieced beams, upon request

Plates

Manufactured with flattened extra-fine rolled sections made of high-performance casting alloy (tensile strength, Rm = $290 \mathrm{MPa}, \mathrm{HB}$ $=77$). Standard plates can be machined according to drawings (code D).

V-shaped guide rails, PAR version

Made of specially treated high-carbon steel. Standard versions include induction hardened rails section $28.6 \times 11,35 \times 16$ and 55×25 (max. length 4000 mm). Joints bevel cut at an angle of 20°.

Roller slides, PAR version

Body in aluminium alloy G AL SI 91 hardened and tempered according to EN AB 46400, rollers with double rows of angular contact ball bearings, backlash-free, long life lubrication: $\varnothing 30, \varnothing 40, \varnothing 52, \varnothing 62 \mathrm{~mm}$ rollers. Adjustable tolerance between rollers and guides. Complete with wiper scraper.

Caged ball roller slides and guide rails, PASM version

Systems are supplied with caged ball roller slides. The cage included in the slides has two purposes: it reduces the friction between the guide rail and the slide and prolongs their service life, and allows lubrication refills to be performed more rarely. The modules and guide rails are suitable for composing sections more than 10 m long. The assembled guide rails have a run parallelism of less than 0.030 mm . The assembly of caged ball roller slides and guide rails normally also involves the machining of the related seat in the profile (code M).

Racks / Toothed pinions

Racks with helical teeth, made of induction-hardened steel and hardened and tempered alloy steel, are available with three different modules: $\mathrm{m} 2, \mathrm{~m} 3$ and m 4 .
PAR versions with guide rails and roller slides, assembled with ground, KSD induction-hardened racks with pinions in highperformance tempered and surface-hardened steel (RD). PASM versions with guide rails and caged ball roller slides, are normally assembled with KSD induction hardened racks with pinions in hardened and tempered RD steel. High-performance KRD racks are available upon request ($\mathrm{Rs}>900 \mathrm{MPa}$): hardened and tempered, induction-hardened, and fully ground (page TL-56). With RD pinions, KRD racks and continuous lubrication, speeds of up to $5 \mathrm{~m} / \mathrm{s}$ can be reached.

Stop bumpers

Important: the rubber stop bumpers provided with standard linear models are suitable and regarded as static limit switches. For special needs, such as stops if the drive breaks, please specify loads, dynamics, details and discuss the use of specific parts, accessories and devices (reinforced plates and attachments - shock absorbers, anti-drop devices, etc.) with our technical dept.

Energy chains or accessories

Energy chains are provided upon request, together with a wide range of accessories. Adjustable brackets and supports are included. Standard sizes are those shown in the catalogue. Energy chains and accessories can be added using the order code on page TL-11.

Anti-oxidation parts and coatings

Rack modules with anti-oxidation coating are available upon request. Materials with special coatings and lubrication are selected according to the environment of use (food industry, health sector, marine environment, exposure to weather, etc.)

A - Features of the system with roller slides

The translation system consists of a plate to which two roller slides with concentric pins and two with eccentric pins are fixed. The eccentric pins help to adjust the tolerance between the roller slide and the sliding track. Check that the angular position of the rollers is such that they can support the max. working load. See page TL-62 and TL-68.

A - Assembly and adjustment of the roller slide.

Check the sense of direction of the roller slide as shown in point A. Check the alignment. Bring the roller slides with concentric pin into contact with the sliding tracks. Adjust the eccentric pins until there is no clearance and the carriage can slide easily along the bar.

IMPORTANT: overloading is easily achieved: this may result in premature wear.
NOTE: always keep friction low: if friction is high, loosen and repeat the adjustment.
No adjustments are required with guide rails and recirculating caged ball linear guides. For high-precision applications, please order low-backlash roller slides.

B - Alignment

All profile anchor supports must be perfectly aligned (with axes side by side: perfectly parallel and coplanar).
When mounting the linear axes in parallel, it is necessary to not only verify the parallelism between the linear units themselves, but also the coplanarity of the surfaces of the heads so that the maximum error does not exceed 0.3 mm per meter between the parallel modules and within $\pm 0.03 \mathrm{~mm}$ compared to the parallelism."

C - Assembly of racks

The axis of the teeth and the guide rails must be parallel within tight tolerances. In the PASM version, the rack seat and the seat of the guide rails for the caged ball roller slide guides are machined together to ensure the correct assembly and positioning accuracy of the axis.

D - Tightening specifications and precautions

Make sure all parts are locked with the appropriate screws and with the right tightening torques.

E-Gearboxes

Supplied upon request. The use of right-angle reduction gears with hollow shaft and key is recommended. With this configuration the gearbox adapting plate is complete with shaft, pinion and step bearing. Otherwise, upon request, the adapting plate can be machined according to customer specifications and the pinion, if obtainable from the standard version. Backlash between the pinion and rack is only adjusted if the gearbox is supplied (or available).

The accuracy of this system is based on the tolerance of:

1. guide rails
2. rolling parts
3. transmission chain (e.g. rack and pinion)

V-shaped guide rails

Made of specially treated high-carbon steel alloy. Their accuracy is shown in the figure below and they are supplied in the following version: induction-hardened with a special grinding process.
Hardness: induction hardened min. 58HRC;

Rolling parts

Rollers with double rows of angular contact ball bearings to absorb axial force have a low friction coefficient (± 0.03) and are complete with sliding sealing rings.
Roller tolerance and radial backlash are in line with DIN 620 parts 2 and 3 (except for the convex external ring R=500 mm), while the load and calculation coefficients comply with DIN ISO 281 and with DIN ISO 76.

Guide rails and caged ball roller slides

As a general rule, these are generally supplied in "normal" accuracy classes. Thus, they are suitable to ensure the appropriate combination of positioning precision, stiffness and self-alignment required for standard industrial applications.
Higher levels of accuracy with low backlash are available upon request.

Lubrication

Rack and pinion

These parts must be lubricated regularly with a gear grease (for high working pressures).
An automatic, programmable system is available to ensure correct lubrication of the teeth (page TL-61).
The tangential force and toque values shown in the table on page TL-61 refer to properly lubricated racks.

Rollers and roller slides

Roller slides and V-shaped rollers are provided with a permanent lubrication system. If properly used, this eliminates the need for any further maintenance, also considering the average life of handling devices.
Do not use solvents to clean rollers or roller slides, as you could unintentionally remove the grease lubricating coat applied to the rolling elements during assembly. However, grease may be added slowly to lithium soap according to DIN 51825 - K3N.

V-shaped guide rails

If properly assembled, with the felt scraper in place, these guides do not require any lubrication, which could attract impurities and have negative consequences.

Guide rails and caged ball roller slides

Due to the cage keeping the ball bearings apart, these units are regarded as permanently lubricated; considering the average life of handling devices, no maintenance is needed before 5000 Km . For applications where dynamic performance is required, our technical dept. will consider the need for special seals or suitable tanks or lubrication systems.

Our technical department is available to check sizing calculations. Please fill in the form with all the necessary data and send it to our technical dept., which will recommend the most suitable size according to the forces applied and precision required.

For a correct design of the system, please fill the form below and send it to our technical dept.
\qquad

SIZING TEMPLATE

required data

optional
 data

Assembly solutions (see page TL-5) no.
Total length
Total working load including EOAT (add Z axis for Y and X axes)
Equipment weight on carriage (gearbox, cylinder, OPTIONAL)
Weight distributed on the beam (energy chain)
Beam supports
Max. projection (any cantilever, the largest)
Span (largest)
Offset load's centre of gravity (X-axis)
Offset load's centre of gravity (Y -axis)
Offset load's centre of gravity (Z-axis)
Additional force, if any
Possible distance between the carriages (see solutions 6-7 on page TL-5)
Transmission performance
Assembly: vertical $=90^{\circ}-$ slope $=30^{\circ}, 45^{\circ}, 60^{\circ}$ - horizontal $=0^{\circ}$
Stroke
Speed
Acceleration
Cycle time
Positioning accuracy
Repeatability
Work environment (temperature and cleanliness)
Daily working cycles
Minimum service life requested

Working cycle

Working cycle example

Remarks: \qquad
\qquad
\qquad
\qquad
\qquad

These tables are useful for making a preliminary selection with load applied in a central position with respect to the plate or profile axis. Z axis length is $<1,600 \mathrm{~mm}$.
Deflection is computed assuming continuous beams having the same span and concentrated static loads.

In the following table, select the appropriate X axes according to the load.

		2X	3 X	4X	5X	6X	8X	10X	LC
O	Deflection								
	50	1,4							5000
?	100	1,8							5000
\%	200	2,7	1,8						5000
\%	300		2,3	2,7					5000
-	400			3,3	2,4				5000
-	500				2,8	1,8			5000
\times	600					2	2		6000
Σ	800						2,5	1,8	6000
	1000							2,1	7000

X-axis

LC
N.B. per i PA 8X e 10X verticale compensare il carico.

In the following table, select the appropriate $\mathbf{Y - X}$ axes according to the load.

		PA 2/1	3/1	4/1	5/2	6/2\|	8/3	6/4	8/6	10/6	10/8	LC
앙	Deflection											
\geq	50	1,9						4				5000
\%	100	2,4	1,7	2	1,6			,				5000
-	200	---			-2,2	-0,8-	- 0,8 -					5000
\bigcirc	300					1,6	1,6	1,6				6000
\%	400							1,9	2	0,9		6000
	500								2,2	1		6000
\sum^{∞}	600								2,5	1,2	1,2	6000
	800										2,2	7000

Y-Z-axes

In the following table, select the appropriate X and $\mathrm{Y}-\mathrm{Z}$ axes according to the load.

Y-Z-axes												
	PA	PA load $[\mathrm{kg}$]	$\begin{aligned} & \mathbf{2 / 1} \\ & 100 \end{aligned}$	$\begin{array}{\|l\|} \mathbf{3 / 1} \\ 100 \end{array}$	$\left\lvert\, \begin{aligned} & \mathbf{4 / 1} \\ & 100 \end{aligned}\right.$	$\begin{aligned} & \mathbf{5 / 2} \\ & 200 \end{aligned}$	$\begin{aligned} & 6 / 2 \\ & 200 \end{aligned}$	$\left\lvert\, \begin{aligned} & 8 / 3 \\ & 300 \end{aligned}\right.$	$\begin{aligned} & 6 / 4 \\ & 400 \end{aligned}$	$\begin{aligned} & \mathbf{8 / 6} \\ & 600 \end{aligned}$	$\begin{gathered} 10 / 6 \\ 600 \end{gathered}$	$\begin{gathered} 10 / 8 \\ 700 \end{gathered}$
	2X	(200)							4			
$\stackrel{\infty}{x}$	3X	(300)										
¢	4X	(400)										
	5X	(500)							,			
	6X	(600)	4---					-----				
	8X	(800)										
	10X	(1000)										

NB: The choice of X axis is based upon the actual load, the supporting points, max. deflection and the total weight of the $Y-Z$ axes.

EXAMPLE: selection of 3-axis system with roller slides
(Please see page TL-10 and the system pages for the nomenclature)
DATA: Total working load $300 \mathrm{~kg}, \mathrm{X}$ axis stroke: $5,000 \mathrm{~mm}, \mathrm{Y}$ axis stroke: $4,000 \mathrm{~mm}, \mathrm{Z}$ axis stroke: $2,000 \mathrm{~mm}$, support points: 2 By analysing the table of $Y-Z$ axes based on the working load (Pc), profile length (Ly) and deflection, the selection falls on one PA 8/3 (load 300 kg .) system.
Check: $\mathrm{P}_{\text {eff }}=\mathrm{P}_{\max }-(\mathrm{Lz}-1,600) / 1,000 \cdot \mathrm{q}_{\mathrm{z}}=300-(2,900-1,600) / 1,000 \cdot 35=254.5 \mathrm{~kg} .<$ di 300 kg (not sufficient).
Therefore select the larger size PA $6 / 4$ (max. load capacity 400 kg .)
$\mathrm{M}_{\text {toty }+z} \mathrm{PA} 6 / 4=\mathrm{M}_{\text {base }}+\left(\mathrm{q}_{\mathrm{y}} \cdot\right.$ stroke $\mathrm{Q}_{\mathrm{y}}+\mathrm{q}_{z} \cdot$ stroke $\left.\mathrm{Q}_{z}\right) / 1000+\mathrm{Pc}=244+(66 \cdot 4,000+48 \cdot 2,000) / 1,000+300=904 \mathrm{~kg}$.
$P_{\text {totx }}=M_{\text {tot }}$ PA $6 / 4(Y+Z) \cdot 0.66=596.6 \mathrm{~kg}$.
$L x=$ stroke $_{x}+1,200$ approx. $=5,000+1,200=6,200 \mathrm{~mm}$
By analyzing the table of X axes based on the load ($\mathrm{P}_{\text {totx }}$) profile length $(L x)$ and deflection, it is possible to select 2 linear axes PA 6X Chosen composition: $n^{\circ} 1$ PA 6/4 + $n^{\circ} 2$ PA 6X
Perform a final analysis by computing the deflection based on the actual size of the spans.
Our technical dept. is at your complete disposal to help you examine the most suitable applications for your requirements and help you ...with motor and drive sizing for the whole project.

1/5 Pick and place system with twin vertical axis and rack and pinion drive for the production of panels in the construction industry.

2 Pipe handling system in welding plant.
3/6 Multicarriage handling system with separate rack and pinion drive for each X and Y axis.

4 Shuttle system for 6-axis of SCARA robot.
7 Column lift - load 100 kg - stroke 17 m .

For single-axis roller versions

Axis orientation position $\mathrm{X}-\mathrm{Y}-\mathrm{Z}$:

Simplified code setting of the module

Medium profiles

E 01-4 (90x90)

Weight	6	$\mathrm{~kg} / \mathrm{m}$
Max. length	6	m
Moment of inertia Ix	$2,027,000$	$\mathrm{~mm}^{4}$
Moment of inertia ly	$2,027,000$	$\mathrm{~mm}^{4}$
Polar moment of inertia Iz	$1,100,000$	$\mathrm{~mm}^{4}$
Bending section modulus Wx	45,040	$\mathrm{~mm}^{3}$
Bending section modulus Wy	45,040	$\mathrm{~mm}^{3}$

MA 1-5 (100x100)		
Weight	9.5	$\mathrm{~kg} / \mathrm{m}$
Max. length	6	m
Moment of inertia Ix	$3,800,000$	$\mathrm{~mm}^{4}$
Moment of inertia ly	$1,900,000$	$\mathrm{~mm}^{4}$
Polar moment of inertia Iz	76,000	$\mathrm{~mm}^{4}$
Bending section modulus Wx	mm^{3}	
Bending section modulus Wy	73,000	$\mathrm{~mm}^{3}$

7400568 energy chain support profile		
Weight	1.3	$\mathrm{~kg} / \mathrm{m}$
Available length	6	m

E 01-5 (90x180)		
Weight	approx. 12	$\mathrm{~kg} / \mathrm{m}$
Max. length	8	m
Moment of inertia Ix	$4,420,000$	$\mathrm{~mm}^{4}$
Moment of inertia ly	$4,400,000$	$\mathrm{~mm}^{4}$
Polar moment of inertia Iz	168,670	$\mathrm{~mm}^{3}$
Bending section modulus Wx	98,220	$\mathrm{~mm}^{3}$
Bending section modulus Wy		

Load bearing profiles

STATYCA (120x170)		
Weight	17	$\mathrm{~kg} / \mathrm{m}$
Max. length	12	m
Moment of inertia lx	$20,360,000$	$\mathrm{~mm}^{4}$
Moment of inertia ly	$10,200,000$	$\mathrm{~mm}^{4}$
Polar moment of inertia Iz	$8,460,000$	$\mathrm{~mm}^{4}$
Bending section modulus Wx	239,500	$\mathrm{~mm}^{3}$
Bending section modulus Wy	170,000	$\mathrm{~mm}^{3}$

VALYDA (120x200)		
Weight	21	$\mathrm{~kg} / \mathrm{m}$
Max. length	12	m
Moment of inertia lx	$32,980,000$	$\mathrm{~mm}^{4}$
Moment of inertia ly	$12,980,000$	$\mathrm{~mm}^{4}$
Polar moment of inertia Iz	$10,500,000$	$\mathrm{~mm}^{4}$
Bending section modulus Wx	329,800	$\mathrm{~mm}^{3}$
Bending section modulus Wy	215,130	$\mathrm{~mm}^{3}$
Only anodized up to	9	m

* Dovetail inserts available in various size

LOGYCA (120x220)		
Weight	25	$\mathrm{~kg} / \mathrm{m}$
Max. length	12	m
Moment of inertia Ix	$46,550,000$	$\mathrm{~mm}^{4}$
Moment of inertia ly	$15,650,000$	$\mathrm{~mm}^{4}$
Polar moment of inertia Iz	$14,300,000$	$\mathrm{~mm}^{4}$
Bending section modulus Wx	423,182	$\mathrm{~mm}^{3}$
Bending section modulus Wy	260,833	$\mathrm{~mm}^{3}$
Only anodized up to	9	m

PRATYCA (170x280)		
Weight	40	$\mathrm{~kg} / \mathrm{m}$
Max. length	12	m
Moment of inertia lx	$50,288,000$	$\mathrm{~mm}^{4}$
Moment of inertia ly	$72,700,000$	$\mathrm{~mm}^{4}$
Polar moment of inertia Iz	957,790	$\mathrm{~mm}^{3}$
Bending section modulus Wx	591,620	$\mathrm{~mm}^{3}$
Bending section modulus Wy		

SOLYDA (200x360)	60	$\mathrm{~kg} / \mathrm{m}$
Weight	12	m
Max. length	$318,687,200$	$\mathrm{~mm}^{4}$
Moment of inertia Ix	$105,533,000$	$\mathrm{~mm}^{4}$
Moment of inertia ly	$150,000,000$	$\mathrm{~mm}^{4}$
Polar moment of inertia Iz	$1,770,500$	$\mathrm{~mm}^{3}$
Bending section modulus (Wx)	$1,035,300$	$\mathrm{~mm}^{3}$
Bending section modulus (Wy)		

60 Kg
PC
High Cove Rate Low Ovile Rate
120 Kg

* For indication only, variable according to the gearbox chosen

Performance	X -axis	
Max. load ($\mathrm{Pc}_{\text {max }}$) with load on axis ($\mathrm{L} \leq 1,600 \mathrm{~mm}$)		
Max. speed	3.5	[m/s]
Max. acceleration	8	[$\mathrm{m} / \mathrm{s}^{2}$]
Repeatability	± 0.2	[mm]
Beam max. length without joint	8,000	[mm]

Recommended max working conditions

Model $\mathbf{M}_{\mathbf{x}}[\mathrm{Nm}] \quad \mathrm{M}_{\mathbf{y}}[\mathrm{Nm}] \quad \mathbf{M}_{\mathbf{z}}[\mathrm{Nm}] \quad \mathrm{F}_{\mathrm{x}}[\mathrm{N}] \quad \mathrm{F}_{\mathbf{y}}[\mathrm{N}] \quad \mathrm{F}_{\mathbf{z}}[\mathrm{N}]$
$\begin{array}{lllllll}\text { PAR } 1 & 490 & 1,170 & 1,170 & 2,900 & 5,900 & 5,900\end{array}$
The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.

Assembly positions and load direction, see page TL-10

Gonstruction data	X -axis	
Load-bearing beam (see page TL-12 to TL-15)	E01-5	
Rack (hardened, helical teeth, ground: module KSD)	module 2	[mm^{2}]
Guide rail	28×11 (hardened)	
Translation	4 roller slides with 4 rollers $\varnothing 30$	
Room available for energy chain	115x45 approx.	[mm^{2}]
Pinion pitch diameter type RD	44.56 (as an alternative 63.66)	[mm]
Weights	X -axis	
"Base" model (stroke $^{\text {¢ }}=0$)	$\mathrm{M}_{\text {base }}=28$	[kg]
Slide (plates + carriages)	$\mathrm{M}_{\text {slide }}=15$	[kg]
Beam (incl. guide rails and rack)	$\mathrm{q}_{\mathrm{x}}=19$	[kg/m]

Formula:

Module total weight: $\mathbf{M}_{\text {tot }=}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{x}} \bullet\right.$ stroke $\left._{\mathbf{x}}\right) / \mathbf{1 , 0 0 0}$ Stroke $_{\mathrm{X}}[\mathrm{mm}]$

P / A / S / 180 / Stroke / Length / FRD / ...
PC
$\xlongequal[\text { High Ocrice Rate Low Occie Rate }]{ } 120 \mathrm{Kg}$

* For indication only, variable according to the gearbox chosen

| Performances X-axis
 Max. load $\left(\mathrm{Pc}_{\text {max }}\right)$ with load on axis $(\mathrm{L} \leq 1,600 \mathrm{~mm})$
 Max. speed 3.5 $[\mathrm{~m} / \mathrm{s}]$
 Max. acceleration 10 $\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
 Repeatability ± 0.05 $[\mathrm{~mm}]$
 Beam max. length without joint 8,000 $[\mathrm{~mm}]$ |
| :--- | :---: | :---: |

Recommended max working conditions

Model $\quad \mathbf{M}_{\mathbf{x}}[\mathrm{Nm}] \quad \mathbf{M}_{\mathbf{y}}[\mathrm{Nm}] \quad \mathbf{M}_{\mathbf{z}}[\mathrm{Nm}] \quad \mathrm{F}_{\mathrm{x}}[\mathrm{N}] \quad \mathrm{F}_{\mathbf{y}}[\mathrm{N}] \quad \mathrm{F}_{\mathbf{z}}[\mathrm{N}]$

PAS	1,250	3,450	3,450	2,900 16,950 16,950

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.
The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Construction data	X-axis	
Load-bearing beam (see page TL-12 to TL-15)	E01-5	
Rack (hardened, helical teeth, ground: module KSD)	module 2	$\left[\mathrm{mm}^{2}\right]$
Translation: 4 caged ball roller slides and guide rails	Size 20	$\left[\mathrm{~mm}^{2}\right]$
Room available for energy chain	115×45 approx.	$[\mathrm{mm}]$
Pinion pitch diameter (induction-hardened, ground - RD)	44.56 (as an alternative 63.66$)$	

Weights	X-axis	
"Base" model $\left(\right.$ stroke $\left._{\mathrm{x}}=0\right)$	$\mathrm{M}_{\text {base }}=27$	$[\mathrm{~kg}]$
Slide (plates + carriages)	$\mathrm{M}_{\text {slita }}=14$	$[\mathrm{~kg}]$
Beam (incl. guide rails and rack)	$\mathrm{ax}_{\mathrm{x}}=19$	$[\mathrm{~kg} / \mathrm{m}]$

Formules:

Actual load: $P_{\text {eff. }}=P_{\max }-(L z-1,600) / 1,000 \bullet q_{z}<$ of $P c$
Module total weight: $\mathbf{M}_{\text {tot }}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{x}}{ }^{\bullet}\right.$ stroke $\left._{\mathbf{x}}\right) / \mathbf{1 , 0 0 0} \quad$ Stroke $_{\mathrm{x}}[\mathrm{mm}]$

80 Kg
PC
High Cycle Rate Low Cycle Rate

Performance	X -axis	
Max. load ($\mathrm{Pc}_{\max }$) with load on axis ($\mathrm{L} \leq 1,600 \mathrm{~mm}$)		
Max. speed	3.5	[m/s]
Max. acceleration	10	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$
Repeatability	± 0.2	[mm]
Beam max. length without joint	12000	[mm]

Recommended max working conditions

Model $\mathbf{M}_{\mathrm{x}}[\mathrm{Nm}] \quad \mathrm{M}_{\mathbf{y}}[\mathrm{Nm}] \quad \mathbf{M}_{\mathbf{z}}[\mathrm{Nm}] \quad \mathrm{F}_{\mathrm{x}}[\mathrm{N}] \quad \mathrm{F}_{\mathrm{y}}[\mathrm{N}] \quad \mathrm{F}_{\mathbf{z}}[\mathrm{N}]$
$\begin{array}{lllllll}\text { PAR } 2 & 560 & 1,350 & 1,350 & 5,980 & 7,000 & 7,050\end{array}$
The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.

Assembly positions and load direction, see page TL-10

Gonstruction data	X-axis	
Load-bearing beam (see page TL-12 to TL-15)	Statyca	
Rack (hardened, helical teeth: module KSD)	module 3	[mm^{2}]
Guide rail	35×16 (hardened and polished)	
Translation	4 roller slides with 2 rollers $\varnothing 40$	
Room available for energy chain	115x45	[mm^{2}]
Pinion pitch diameter type RD	63.66 (as an alternative 89.13)	[mm]
Weights	X-axis	
"Base" model (stroke $^{\text {¢ }}=0$)	$\mathrm{M}_{\text {base }}=59$ approx.	[kg]
Slide (plates + carriages)	$\mathrm{M}_{\text {slide }}=29$ approx.	[kg]
Beam (incl. guide rails and rack)	$\mathrm{q}_{\mathrm{x}}=31$ approx.	[kg/m]

Formula:

Module total weight: $\mathbf{M}_{\text {tot }}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{x}} \bullet\right.$ stroke $\left._{\mathbf{x}}\right) / \mathbf{1 , 0 0 0}$ Stroke $_{\mathrm{x}}[\mathrm{mm}]$

P / A / S / M / 170 / Stroke / Length / FRD / ...
PC
$\xlongequal[\text { High Cycle Rate Low Cycle Rate }]{ } 250 \mathrm{Kg}$

* For indication only, variable according to the gearbox chosen

Performances	X -axis	
Max. load ($\mathrm{Pc}_{\text {max }}$) with load on axis ($\mathrm{L} \leq 1,600 \mathrm{~mm}$)		
Max. speed	3.5	[m/s]
Max. acceleration	10	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$
Repeatability	± 0.05	[mm]
Beam max. length without joint	12000	[mm]

Recommended max working conditions
Model $M_{x}[\mathrm{Nm}] \quad \mathbf{M}_{\mathbf{y}}[\mathrm{Nm}] \quad \mathrm{M}_{\mathbf{z}}[\mathrm{Nm}] \quad \mathrm{F}_{\mathrm{x}}[\mathrm{N}] \quad \mathrm{F}_{\mathbf{y}}[\mathrm{N}] \quad \mathrm{F}_{\mathbf{z}}[\mathrm{N}]$

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.
The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Construction data	X-axis	
Load-bearing beam (see page TL-12 to TL-15)	Statyca	
Rack (hardened, helical teeth, ground: module KSD)	module 3	$\left[\mathrm{mm}^{2}\right]$
Translation: 4 caged ball roller slides and guide rails	Size 20	
Room available for energy chain	115×45	$\left[\mathrm{~mm}^{2}\right]$
Pinion pitch diameter (induction-hardened, ground - RD)	63.66 (as an alternative 89.13$)$	$[\mathrm{mm}]$

Weights	X-axis	
"Base" model $\left(\right.$ stroke $\left._{\mathrm{x}}=0\right)$	$\mathrm{M}_{\text {base }}=57$ approx.	$[\mathrm{kg}]$
Slide (plates + carriages)	$\mathrm{M}_{\text {slita }}=29$ approx.	$[\mathrm{kg}]$
Beam (incl. guide rails and rack)	$\mathrm{ax}_{\mathrm{x}}=29$ approx.	$[\mathrm{kg} / \mathrm{m}]$

Formula:

Module total weight: $\mathbf{M}_{\text {tot }=}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{x}} \bullet \mathbf{s t r o k e}_{\mathbf{x}}\right) / \mathbf{1 , 0 0 0}$ Stroke $_{\mathbf{X}}[\mathrm{mm}]$

* For indication only, variable according to the gearbox chosen

Recommended max working conditions
Model $M_{x}[\mathrm{Nm}] \quad M_{y}[\mathrm{Nm}] \quad \mathrm{M}_{\mathbf{z}}[\mathrm{Nm}] \quad \mathrm{F}_{\mathrm{x}}[\mathrm{N}] \quad \mathrm{F}_{\mathrm{y}}[\mathrm{N}] \quad \mathrm{F}_{\mathbf{z}}[\mathrm{N}]$

PAR 3	1,115	2,685	2,685	5,980	14,100	14,100

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.

Assembly positions and load direction, see page TL-10

Gonstruction data	X -axis	
Load-bearing beam (see page TL-12 to TL-15)	Valyda	
Rack (hardened, helical teeth, ground: module KSD)	module 3	[mm^{2}]
Guide rail	35×16 (hardened and polished)	
Translation	4 roller slides with 4 rollers Ø 040	
Room available for energy chain	115x45	[mm^{2}]
Pinion pitch diameter type RD	63.66 (as an alternative 89.13)	[mm]
Weights	X -axis	
"Base" model (stroke $^{\text {e }}=0$)	$\mathrm{M}_{\text {base }}=70$ approx.	[kg]
Slide (plates + carriages)	$\mathrm{M}_{\text {slide }}=36$ appox.	[kg]
Beam (incl. guide rails and rack)	$\mathrm{q}_{\mathrm{x}}=35$ approx.	[kg/m]

Formula:

Module total weight: $\mathbf{M}_{\text {tot }=}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{x}} \bullet\right.$ stroke $\left._{\mathbf{x}}\right) / \mathbf{1 , 0 0 0}$ Stroke $_{\mathbf{x}}[\mathrm{mm}]$

P / A / S / M / 200 / Stroke / Length / FRD / ...

High Cycle Rate Low Cycle Rate $\mathbf{3 0 0} \mathbf{~ K g}$

* For indication only, variable according to the gearbox chosen

Performances	X-axis	
Max. load $\left(\mathrm{Pc}_{\text {max }}\right)$ with load on axis $(\mathrm{L} \leq 1,600 \mathrm{~mm})$		
Max. speed	3	$[\mathrm{~m} / \mathrm{s}]$
Max. acceleration	7	$\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
Repeatability	± 0.05	$[\mathrm{~mm}]$
Beam max. length without joint	12000	$[\mathrm{~mm}]$

Recommended max working conditions

Model $\mathbf{M}_{\mathbf{x}}[\mathrm{Nm}] \quad \mathbf{M}_{\mathbf{y}}[\mathrm{Nm}] \quad \mathbf{M}_{\mathbf{z}}[\mathrm{Nm}] \quad \mathrm{F}_{\mathrm{x}}[\mathrm{N}] \quad \mathrm{F}_{\mathbf{y}}[\mathrm{N}] \quad \mathrm{F}_{\mathbf{z}}[\mathrm{N}]$

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.
The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Construction data	X-axis	
Load-bearing beam (see page TL-12 to TL-15)	Valyda	
Rack (hardened, helical teeth, ground: module KSD)	module 3	$\left[\mathrm{~mm}^{2}\right]$
Translation: 4 caged ball roller slides and guide rails	Size 20	
Room available for energy chain	115×45	$\left[\mathrm{~mm}^{2}\right]$
Pinion pitch diameter (induction-hardened, ground - RD)	63.66 (as an alternative 89.13)	$[\mathrm{mm}]$

Weights	X -axis	
"Base" model $\left(\right.$ stroke $\left._{\mathrm{x}}=0\right)$ $\mathrm{M}_{\text {base }}=68$ approx. $[\mathrm{kg}]$ Slide (plates + carriages) $\mathrm{M}_{\text {slita }}=36$ approx. $[\mathrm{kg}]$ Beam (incl. guide rails and rack) $\mathrm{qx}_{\mathrm{x}}=33$ approx. $[\mathrm{kg} / \mathrm{m}]$ l		

Formula:

Module total weight: $\mathbf{M}_{\text {tot }}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{x}} \bullet\right.$ stroke $\left._{\mathrm{x}}\right) / 1,000 \quad$ Stroke $_{\mathrm{x}}[\mathrm{mm}]$

P / A / R / P / 200 / Stroke / Length / FRD / ...

* For indication only, variable according to the gearbox chosen

PC
100 Kg High Cycle Rate Low Cycle Rate 400 Kg

Performance	X-axis	
Max. load $\left(\mathrm{Pc}_{\max }\right)$ with load on axis $(\mathrm{L} \leq 1,600 \mathrm{~mm})$		
Max. speed	3	$[\mathrm{~m} / \mathrm{s}]$
Max. acceleration	7	$\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
Repeatability	± 0.2	$[\mathrm{~mm}]$
Beam max. length without joint	12000	$[\mathrm{~mm}]$

Recommended max working conditions

Model $\mathbf{M}_{\mathrm{x}}[\mathrm{Nm}] \quad \mathrm{M}_{\mathrm{y}}[\mathrm{Nm}] \quad \mathrm{M}_{\mathbf{z}}[\mathrm{Nm}] \quad \mathrm{F}_{\mathrm{x}}[\mathrm{N}] \quad \mathrm{F}_{\mathrm{y}}[\mathrm{N}] \quad \mathrm{F}_{\mathbf{z}}[\mathrm{N}]$
$\begin{array}{lllllll}\text { PAR } 4 & 2,200 & 5,350 & 5,380 & 10,990 & 23,925 & 23,925\end{array}$
The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.

Assembly positions and load direction, see page TL-10

Gonstruction data	X-axis	
Load-bearing beam (see page TL-12 to TL-15)	Valyda	
Rack (hardened, helical teeth, ground: module KSD)	module 4	[mm^{2}]
Guide rail	55×25 (hardened and polished)	
Translation	4 roller slides with 4 rollers $\varnothing 52$	
Room available for energy chain	115x45	[mm^{2}]
\varnothing Pinion pitch diameter type RD	76.39 (as an alternative 106.10)	[mm]
Weights	X -axis	
"Base" model (stroke $^{\text {¢ }}=0$)	$\mathrm{M}_{\text {base }}=96$ approx.	[kg]
Slide (plates + carriages)	$\mathrm{M}_{\text {slide }}=48$ approx.	[kg]
Beam (incl. guide rails and rack)	$\mathrm{q}_{\mathrm{x}}=48$ approx.	[kg/m]

Formula:

Module total weight: $\mathbf{M}_{\text {tot }=}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{x}} \bullet\right.$ stroke $\left._{\mathbf{x}}\right) / \mathbf{1 , 0 0 0}$ Stroke $_{\mathrm{X}}[\mathrm{mm}]$

P / A / S / M / 200 / Stroke / Length / FRD / ... $100 \mathrm{Kg} \underset{\underset{\text { Highorocie Rade }}{ } \frac{\text { Low Covice Rate }}{}}{ } 400 \mathrm{Kg}$

* For indication only, variable according to the gearbox chosen

| Performances X-axis
 Max. load $\left(\mathrm{Pc}_{\text {max }}\right)$ with load on axis $(\mathrm{L} \leq 1,600 \mathrm{~mm})$
 Max. speed 3 $[\mathrm{~m} / \mathrm{s}]$
 Max. acceleration 7 $\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
 Repeatability $\pm 0,05$ $[\mathrm{~mm}]$
 Beam max. length without joint 12000 $[\mathrm{~mm}]$ |
| :--- | :---: | :---: |

Recommended max working conditions

Model $\mathbf{M}_{\mathbf{x}}[\mathrm{Nm}] \quad \mathbf{M}_{\mathbf{y}}[\mathrm{Nm}] \quad \mathbf{M}_{\mathbf{z}}[\mathrm{Nm}] \quad \mathrm{F}_{\mathrm{x}}[\mathrm{N}] \quad \mathrm{F}_{\mathrm{y}}[\mathrm{N}] \quad \mathrm{F}_{\mathbf{z}}[\mathrm{N}]$

PASM4	1,850	5,200	5,200	10,990	24,100
24,100					

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.
The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Construction data	X-axis	
Load-bearing beam (see page TL-12 to TL-15)	Valyda	
Rack (hardened, helical teeth, ground: module KSD)	module 4	$\left[\mathrm{mm}^{2}\right]$
Translation: 4 caged ball roller slides and guide rails	Size 25	
Room available for energy chain	115×45	$\left[\mathrm{~mm}^{2}\right]$
Pinion pitch diameter (induction-hardened, ground - RD)	76.39 (as an alternative 106.10)	$[\mathrm{mm}]$

Weights	X-axis	
"Base" model $\left(\right.$ stroke $\left._{\mathrm{x}}=0\right)$ $\mathrm{M}_{\text {base }}=80$ approx. $[\mathrm{kg}]$ Slide (plates + carriages) $\mathrm{M}_{\text {slita }}=38$ approx. $[\mathrm{kg}]$ Beam (incl. guide rails and rack) $\mathrm{q}_{\mathrm{x}}=40$ approx. $[\mathrm{kg} / \mathrm{m}]$ l		

Formula:

Module total weight: $\mathbf{M}_{\text {tot }}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{x}} \bullet\right.$ stroke $\left._{\mathrm{x}}\right) / 1,000 \quad$ Stroke $_{\mathrm{x}}[\mathrm{mm}]$

P / A / R / P / 220 / Stroke / Length / FRD / ...

* For indication only, variable according to the gearbox chosen

 High Cycle Rate Low Cycle Rate

| Performance X-axis
 Max. load $\left(\mathrm{Pc}_{\text {max }}\right)$ with load on axis $(\mathrm{L} \leq 1,600 \mathrm{~mm})$
 Max. speed 3 $[\mathrm{~m} / \mathrm{s}]$
 Max. acceleration 6 $\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
 Repeatability ± 0.2 $[\mathrm{~mm}]$
 Beam max. length without joint 12000 $[\mathrm{~mm}]$ |
| :--- | :---: | :---: | :--- |

Recommended max working conditions
Model $\quad \mathrm{M}_{\mathrm{x}}[\mathrm{Nm}] \mathrm{M}_{\mathrm{y}}[\mathrm{Nm}] \quad \mathrm{M}_{\mathrm{z}}[\mathrm{Nm}] \quad \mathrm{F}_{\mathrm{x}}[\mathrm{N}] \quad \mathrm{F}_{\mathrm{y}}[\mathrm{N}] \quad \mathrm{F}_{\mathrm{z}}[\mathrm{N}]$

| PAR 5 | 3,000 | 6,720 | 6,720 | 10,990 | 29,900 | 29,900 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.

Assembly positions and load direction, see page TL-10

Construction data	X-axis	
Load-bearing beam (see page TL-12 to TL-15)	Logyca	
Rack (hardened, helical teeth, ground: module KSD)	module 4	[mm^{2}]
Guide rail	55×25 (hardened and polished)	
Translation	4 roller slides with 4 rollers $\varnothing 62$	
Room available for energy chain	115x45	[mm^{2}]
\varnothing Pinion pitch diameter type RD	76.39 (as an alternative 106.10)	[mm]
Weights	X -axis	
"Base" model (stroke $^{\text {x }}=0$)	$\mathrm{M}_{\text {base }}=106$ approx.	[kg]
Slide (plates + carriages)	$\mathrm{M}_{\text {slide }}=54$ approx.	[kg]
Beam (incl. guide rails and rack)	$\mathrm{q}_{\mathrm{X}}=52$ approx.	[kg/m]

Formula:

Module total weight: $\mathbf{M}_{\text {tot }}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{x}} \bullet\right.$ stroke $\left._{\mathrm{x}}\right) / \mathbf{1 , 0 0 0}$ Stroke $_{\mathrm{X}}[\mathrm{mm}]$

P / A / S / M / 220 / Stroke / Length / FRD / ...

High Cycle Rate Low Cycle Rate

* For indication only, variable according to the gearbox chosen

| Performances X-axis
 Max. load $\left(\mathrm{Pc}_{\text {max }}\right)$ with load on axis $(\mathrm{L} \leq 1,600 \mathrm{~mm})$
 Max. speed 3 $[\mathrm{~m} / \mathrm{s}]$
 Max. acceleration 6 $\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
 Repeatability ± 0.05 $[\mathrm{~mm}]$
 Beam max. length without joint 12000 $[\mathrm{~mm}]$ |
| :--- | :--- | :--- |

Construction data	X-axis	
Load-bearing beam (see page TL-12 to TL-15)	Logyca	
Rack (hardened, helical teeth, ground: module KSD)	module 4	$\left[\mathrm{mm}^{2}\right]$
Translation: 4 caged ball roller slides and guide rails	Size 25	$\left[\mathrm{mm}^{2}\right]$
Room available for energy chain	115×45	$[\mathrm{~mm}]$
Pinion pitch diameter (induction-hardened, ground - RD)	76.39 (as an alternative 106.10)	

Weights	X-axis	
"Base" model $\left(\right.$ stroke $\left._{\mathrm{x}}=0\right)$ $\mathrm{M}_{\text {base }}=90$ approx. $[\mathrm{kg}]$ Slide (plates + carriages) $\mathrm{M}_{\text {slita }}=44$ approx. $[\mathrm{kg}]$ Beam (incl. guide rails and rack) $\mathrm{qx}_{\mathrm{x}}=44$ approx. $[\mathrm{kg} / \mathrm{m}]$ l		

Formula:

Module total weight: $\mathbf{M}_{\text {tot }=}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{x}} \bullet\right.$ stroke $\left._{\mathbf{x}}\right) / \mathbf{1 , 0 0 0}$ Stroke $_{\mathrm{x}}[\mathrm{mm}]$

P / A / R / P / 280 / Stroke / Length / FRD / ...
300 Kg
PC
High ovice Rale Low crice Rate

* For indication only, variable according to the gearbox chosen

Performance	X -axis	
Max. load ($\mathrm{Pc}_{\text {max }}$) with load on axis ($\mathrm{L} \leq 1,600 \mathrm{~mm}$)		
Max. speed	3	[m/s]
Max. acceleration	4	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$
Repeatability	± 0.2	[mm]
Beam max. length without joint	12000	[mm]

Recommended max working conditions
$\begin{array}{llllll}\text { Model } & \mathbf{M}_{\mathrm{x}}[\mathrm{Nm}] \quad \mathbf{M}_{\mathbf{y}}[\mathrm{Nm}] \quad \mathrm{M}_{\mathbf{z}}[\mathrm{Nm}] \quad \mathrm{F}_{\mathrm{x}}[\mathrm{N}] \quad \mathrm{F}_{\mathbf{y}}[\mathrm{N}] \quad \mathrm{F}_{\mathbf{z}}[\mathrm{N}]\end{array}$

PAR 6	3,700	8,770	8,770	10,990	29,900	29,900

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.

Assembly positions and load direction, see page TL-10

Construction data	X-axis	
Load-bearing beam (see page TL-12 to TL-15)	Pratyca	
Rack (hardened, helical teeth, ground: module KSD)	module 4	
Guide rail	55×25 (hardened and polished)	
Translation	4 roller slides with 4 rollers Ø62	
Room available for energy chain	175×45	$\left[\mathrm{~mm}^{2}\right]$
Pinion pitch diameter type RD	76.39 (as an alternative 106.10)	$[\mathrm{mm}]$
Weights	X^{2}-axis	
"Base" model (stroke $=0$)	$\mathrm{M}_{\text {base }}=164$	$[\mathrm{~kg}]$
Slide (plates + carriages)	$\mathrm{M}_{\text {slide }}=79$	$[\mathrm{~kg}]$
Beam (incl. guide rails and rack)	$\mathrm{q}_{\mathrm{x}}=66$	$[\mathrm{~kg} / \mathrm{m}]$

Formula:

Module total weight: $\mathbf{M}_{\text {tot }=}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{x}} \bullet\right.$ stroke $\left._{\mathbf{x}}\right) / \mathbf{1 , 0 0 0}$ Stroke $_{\mathbf{X}}[\mathrm{mm}]$

P / A / S / M / 280 / Stroke / Length / FRD / ...

High Cycle Rate Low Cycle Rate

* For indication only, variable according to the gearbox chosen

| Performances X-axis
 Max. load $\left(\mathrm{Pc}_{\text {max }}\right)$ with load on axis $(\mathrm{L} \leq 1,600 \mathrm{~mm})$
 Max. speed 3 $[\mathrm{~m} / \mathrm{s}]$
 Max. acceleration 5 $\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
 Repeatability ± 0.05 $[\mathrm{~mm}]$
 Beam max. length without joint 12000 $[\mathrm{~mm}]$ |
| :--- | :---: | :---: |

Recommended max working conditions

$\begin{array}{llll}\text { Model } & M_{x}[N m] ~ & M_{y}[N m] ~ & M_{z}[N m] \quad F_{x}[N] \quad F_{y}[N] \quad F_{z}[N]\end{array}$
PASM $64,160 \quad 6,750 \quad 6,750 \quad 10,990 \quad 34,050 \quad 34,050$
The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.
The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Construction data	X-axis	
Load-bearing beam (see page TL-12 to TL-15)	Pratyca	
Rack (hardened, helical teeth, ground: module KSD)	module 4	$\left[\mathrm{mm}^{2}\right]$
Translation: 4 caged ball roller slides and guide rails	Size 30	
Room available for energy chain	175×45	$\left[\mathrm{~mm}^{2}\right]$
Pinion pitch diameter (induction-hardened, ground - RD)	76.39 (as an alternative 106.10)	$[\mathrm{mm}]$

Weights	X-axis	
"Base" model (stroke $\left.{ }_{x}=0\right)$	$\mathrm{M}_{\text {base }}=149$ approx.	$[\mathrm{kg}]$
Slide (plates + carriages)	$\mathrm{M}_{\text {slita }}=69$ approx.	$[\mathrm{kg}]$
Beam (incl. guide rails and rack)	$\mathrm{q}_{\mathrm{x}}=60$ approx.	$[\mathrm{kg} / \mathrm{m}]$

Formula:

Module total weight: $\mathbf{M}_{\text {tot }}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{x}} \bullet\right.$ stroke $\left._{\mathrm{x}}\right) / 1,000 \quad$ Stroke $_{\mathrm{x}}[\mathrm{mm}]$

300 Kg | High Cycle Rate \quad Low Cycle Rate |
| :---: |
| PC |

* For indication only, variable according to the gearbox chosen

Performance	X-axis	
Max. load $\left(\mathrm{Pc}_{\text {max }}\right)$ with load on axis $(\mathrm{L} \leq 1,600 \mathrm{~mm})$		
Max. speed	2.5	$[\mathrm{~m} / \mathrm{s}]$
Max. acceleration	2	$\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
Repeatability	± 0.25	$[\mathrm{~mm}]$
Beam max. length without joint	12000	$[\mathrm{~mm}]$

Assembly positions and load direction, see page TL-10
** With vertical positioning of the unit, a partial load capacity compensation is required

Construction data	X-axis	
Load-bearing beam (see page TL-12 to TL-15)	Pratyca	
Rack (hardened, helical teeth: module KRD)	module 4	$\left[\mathrm{~mm}^{2}\right]$
Guide rail	55×25 (hardened and polished)	
Translation	4 roller slides with 6 rollers $\varnothing 62$	
Room available for energy chain	175×45	$\left[\mathrm{~mm}^{2}\right]$
\varnothing Pinion pitch diameter type RD	76.39 (as an alternative 106.10)	$[\mathrm{mm}]$
Weights	X-axis	
"Base" model (stroke $=0$)	$\mathrm{M}_{\text {base }}=173$ approx.	$[\mathrm{kg}]$
Slide (plates + carriages)	$\mathrm{M}_{\text {slide }}=88$ approx.	$[\mathrm{kg}]$
Beam (incl. guide rails and rack)	$\mathrm{qx}_{\mathrm{x}}=66$ approx.	$[\mathrm{kg} / \mathrm{m}]$

Formula:

Module total weight: $\mathbf{M}_{\text {tot }=}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{x}} \bullet\right.$ stroke $\left._{\mathbf{x}}\right) / \mathbf{1 , 0 0 0}$ Stroke $_{\mathbf{X}}[\mathrm{mm}]$

P / A / S / M / 280 / Stroke / Length / FRD / ... 300 Kg

PC

* For indication only, variable according to the gearbox chosen

| Performances | X-axis | |
| :--- | :--- | :--- | :--- |
| Max. load $\left(\mathrm{Pc}_{\text {max }}\right)$ with load on axis $(\mathrm{L} \leq 1,600 \mathrm{~mm})$ | | |
| Max. speed | 2.5 | $[\mathrm{~m} / \mathrm{s}]$ |
| Max. acceleration | 2 | $\left[\mathrm{~m} / \mathrm{s}^{2}\right]$ |
| Repeatability | ± 0.1 | $[\mathrm{~mm}]$ |
| Beam max. length without joint | 12000 | $[\mathrm{~mm}]$ |

Recommended max working conditions

$\begin{array}{llllll}\text { Model } & \mathbf{M}_{\mathbf{x}}[\mathrm{Nm}] \quad \mathbf{M}_{\mathbf{y}}[\mathrm{Nm}] \quad \mathbf{M}_{\mathbf{z}}[\mathrm{Nm}] \quad \mathbf{F}_{\mathbf{x}}[\mathrm{N}] \quad \mathbf{F}_{\mathbf{y}}[\mathrm{N}] \quad \mathbf{F}_{\mathbf{z}}[\mathrm{N}]\end{array}$ $\begin{array}{llllllllllllllllll} & \text { PASM } 8 & 5,840 & 13,100 & 13,100 & 10,990 & 47,350 & 47,350\end{array}$

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.
The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Construction data	X-axis	
Load-bearing beam (see page 15/17)	Pratyca	
Rack (hardened, helical teeth, ground: module KSD)	module 4	
Translation: 4 caged ball roller slides and guide rails	Size 35	
Room available for energy chain	175×45	$\left[\mathrm{~mm}^{2}\right]$
Pinion pitch diameter (induction-hardened, ground - RD)	76.39 (as an alternative 106.10)	$[\mathrm{mm}]$

Weights	X-axis	
"Base" model (stroke $\left.{ }_{x}=0\right)$	$\mathrm{M}_{\text {base }}=159$ approx.	$[\mathrm{kg}]$
Slide (plates + carriages)	$\mathrm{M}_{\text {slita }}=76$ approx.	$[\mathrm{kg}]$
Beam (incl. guide rails and rack)	$\mathrm{q}_{\mathrm{x}}=64$ approx.	$[\mathrm{kg} / \mathrm{m}]$

Formula:

Module total weight: $\mathbf{M}_{\text {tot }=}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{x}} \bullet \mathbf{s t r o k e}_{\mathbf{x}}\right) / \mathbf{1 , 0 0 0}$ Stroke $_{\mathbf{X}}[\mathrm{mm}]$

PAR 10

P / A / R / P / 360 / Stroke / Length / FRD / ...

* For indication only, variable according to the gearbox chosen

Performance	X-axis	
Max. load $\left(\mathrm{Pc}_{\text {max }}\right)$ with load on axis $(\mathrm{L} \leq 1,600 \mathrm{~mm})$		
Max. speed	2.5	$[\mathrm{~m} / \mathrm{s}]$
Max. acceleration	2	$\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
Repeatability	± 0.25	$[\mathrm{~mm}]$
Beam max. length without joint	12000	$[\mathrm{~mm}]$

Assembly positions and load direction, see page TL-10

** With vertical positioning of the unit, a partial load capacity compensation is required

Recommended max working conditions

Model $\quad \mathbf{M}_{x}[\mathrm{Nm}] \mathbf{M}_{\mathbf{y}}[\mathrm{Nm}] \quad \mathbf{M}_{\mathbf{z}}[\mathrm{Nm}] \quad \mathrm{F}_{\mathrm{x}}[\mathrm{N}] \quad \mathrm{F}_{\mathbf{y}}[\mathrm{N}] \quad \mathrm{F}_{\mathbf{z}}[\mathrm{N}]$ $\begin{array}{lllll}\text { PAR } 10 & 6,900 & 8,800 & 13,160 & 10,990 \\ 29,900 & 29,900\end{array}$

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.
The values shown can be achieved with roller slides with 6 rollers suitable for maximum performance (see page TL-63-TL-64).

Construction data	X-axis	
Load-bearing beam (see page TL-12 to TL-15)	Solyda	
Rack (hardened, helical teeth, ground: module KSD)	module 4	$\left[\mathrm{mm}^{2}\right]$
Guide rail	55×25 (hardened and polished)	
Translation	4 roller slides with 6 rollers $\varnothing 62$	$\left[\mathrm{~mm}^{2}\right]$
Room available for energy chain	115×45	$[\mathrm{~mm}]$
Pinion pitch diameter type RD	76.39 (as an alternative 106.10)	
Weights	X-axis	
"Base" model (stroke $=0$)	$\mathrm{M}_{\text {base }}=196$ approx.	$[\mathrm{kg}]$
Slide (plates + carriages)	$\mathrm{M}_{\text {slide }}=88$ approx.	$[\mathrm{kg}]$
Beam (incl. guide rails and rack)	$\mathrm{q}_{\mathrm{x}}=85$ approx.	$[\mathrm{kg} / \mathrm{m}]$

Formula:

Module total weight: $\mathbf{M}_{\text {tot }}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{x}} \bullet\right.$ stroke $\left._{\mathrm{x}}\right) / \mathbf{1 , 0 0 0}$ Stroke $_{\mathrm{X}}[\mathrm{mm}]$
P / A / S / M / 360 / Stroke / Length / FRD / ... $500 \mathrm{Kg} \underset{\text { High crive Rale }}{\text { Low Cove Rate }} 1000 \mathrm{Kg}$

*For indication only, variable according to the gearbox chosen

| Performances | X-axis | |
| :--- | :---: | :---: | :--- |
| Max. load $\left(\mathrm{Pc}_{\text {max }}\right)$ with load on axis $(\mathrm{L} \leq 1,600 \mathrm{~mm})$ | | |
| Max. speed | 2.5 | $[\mathrm{~m} / \mathrm{s}]$ |
| Max. acceleration | 3 | $\left[\mathrm{~m} / \mathrm{s}^{2}\right]$ |
| Repeatability | ± 0.1 | $[\mathrm{~mm}]$ |
| Beam max. length without joint | 12000 | $[\mathrm{~mm}]$ |

Recommended max working conditions

Model $\quad \mathbf{M}_{\mathbf{x}}[\mathrm{Nm}] \mathbf{M}_{\mathbf{y}}[\mathrm{Nm}] \quad \mathbf{M}_{\mathbf{z}}[\mathrm{Nm}] \quad \mathbf{F}_{\mathbf{x}}[\mathrm{N}] \quad \mathbf{F}_{\mathbf{y}}[\mathrm{N}] \quad \mathbf{F}_{\mathbf{z}}[\mathrm{N}]$ PASM10 7,240 $13,100 \quad 13,100 \quad 10,99047,35047,350$

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.
The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Construction data	X-axis	
Load-bearing beam (see page TL-12 to TL-15)	Solyda	
Rack (hardened, helical teeth, ground: module KSD)	module 4	
Translation: 4 caged ball roller slides and guide rails	Size 35	
Room available for energy chain	175×45	$\left[\mathrm{~mm}^{2}\right]$
Pinion pitch diameter (induction-hardened, ground -RD$)$	76,39 (as an alternative 106.1)	$[\mathrm{mm}]$

Weights	X-axis	
"Base" model $\left(\right.$ stroke $\left._{\mathrm{x}}=0\right)$ $\mathrm{M}_{\text {base }}=182$ approx. $[\mathrm{kg}]$ Slide (plates + carriages) $\mathrm{M}_{\text {slita }}=76$ approx. $[\mathrm{kg}]$ Beam (incl. guide rails and rack) $\mathrm{q}_{\mathrm{x}}=83$ approx. $[\mathrm{kg} / \mathrm{m}]$ l		

Formula:

Module total weight: $\mathbf{M}_{\mathbf{t o t}}=\mathbf{M}_{\text {base }+\left(\mathbf{q}_{\mathbf{x}} \bullet \mathbf{s t r o k e}_{\mathbf{x}}\right) / \mathbf{1 , 0 0 0} \text { Stroke }_{\mathbf{X}}[\mathrm{mm}]}$

Y-Axis / P / A / R / Q / 180 / Stroke / Length / FRD / ...
Z-Axis / P / A / R / Q / 90 / Stroke / Length / X / FRD / ...

* For indication only, variable according to the gearbox chosen

$\left.\begin{array}{l}\text { Performances } \\ \text { Max. load }\left(\mathrm{Pc}_{\text {max }}\right)\end{array}\right)$ with load on axis $(\mathrm{Lz} \leq 1,600 \mathrm{~mm})$			
Zax. speed	3.5	3.5	$[\mathrm{~m} / \mathrm{s}]$
Max. acceleration	8	5	$\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
Repeatability	-	$\pm 0.2^{*}$	$[\mathrm{~mm}]$
Beam max. length without joint	8000	6000	$[\mathrm{~mm}]$

* Reference value considering a stroke of 1000 mm on Z axis.

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.
The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Constructive data	Y-axis	Z-axis
Load-bearing beam (see page TL-12 to TL-15)	E01-5	E01-4
Rack (hardened, helical teeth, ground: module KSD)	module 2	module 2 [$\left.\mathrm{mm}^{2}\right]$
Guide rails	28×11 (hardened)	28×11 (hardened)
Translation	4 roller slides with 4 rollers $\varnothing 30$	4 V -shaped rollers Ø63
Room available for energy chain	115×45	75×45 [$\left.\mathrm{mm}^{2}\right]$
Pinion pitch diameter type RD	44.56 (as an alternative 63.66)	44.56 (as an alternative 63.66) [mm]
Weights	Y-axis	Z-axis
"Base" model (stroke $^{\text {x }}$ and stroke ${ }_{\mathrm{z}}=0$)	$\mathrm{M}_{\text {base }}=59$	[kg]
Slide (plates + carriages)	$\mathrm{M}_{\text {slide }}=26$	[kg]
Beam (incl. guide rails and rack)	$\mathrm{q}_{\mathrm{y}}=22$	$\mathrm{q}_{\mathrm{z}}=15 \quad[\mathrm{~kg} / \mathrm{m}]$

Formules:

Actual load: $P_{\text {eff. }}=P_{\text {max }}-(L z-1,600) / 1,000 \bullet q_{z}<$ of $P c$
Module total weight: $\mathbf{M}_{\text {tot }}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{y}}{ }^{\bullet}\right.$ stroke $_{\mathbf{y}}+\mathbf{q}_{\mathbf{z}} \bullet$ stroke $\left._{\mathbf{z}}\right) / 1,000 \quad$ Stroke $_{\mathrm{x}}$ and stroke ${ }_{\mathbf{z}}[\mathrm{mm}]$

Y-Axis / P / A / S / 180 / Stroke / Length / FRD / ..
Z-Axis / P / A / S / 90 / Stroke / Length / X / FRD / ...

Performances \quad-axis $\quad Z$-axis

Max. load ($\mathrm{Pc}_{\text {max }}$) with load on axis ($\mathrm{Lz} \leq 1,600 \mathrm{~mm}$)

Max. speed	3.5	3.5	$[\mathrm{~m} / \mathrm{s}]$
Max. acceleration	8	5	$\left[\mathrm{~s} / \mathrm{s}^{2}\right]$
Repeatability	-	$\pm 0.1^{*}$	$[\mathrm{~mm}]$
Beam max. length without joint	8000	6000	$[\mathrm{~mm}]$

* Reference value considering a stroke of 1000 mm on Z axis.

Recommended max working conditions

Model	$\mathbf{M}_{\mathbf{x}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{y}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{z}}[\mathbf{N m}]$	$\mathbf{F}_{\mathbf{x}}[\mathbf{N}]$	$\mathbf{F}_{\mathbf{z}}[\mathbf{N}]$
PAS 1/05	1,220	1,440	320	1,200	2,310

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.
The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Constructive data	Y-axis	Z-axis		
Load-bearing beam (see page TL-12 to TL-15)	E01-5	E01-4		
Rack (hardened, helical teeth, ground: module KSD)	module 2	module 2		
Translation: 4 caged ball roller slides and guide rails	size 20	size 15		
Room available for energy chain	115×45	75×45	$\left[\mathrm{~mm}^{2}\right]$	
Pinion pitch diameter (induction-hardened, ground - RD)	44.56 (as an alternative 63.66$)$	44.56 (as an alternative 63.66$)$	$[\mathrm{mm}]$	

Weights	Y-axis	Z-axis		
Base" model (stroke $_{\text {x }}$ and stroke $_{\mathrm{z}}=0$)		$\mathrm{M}_{\text {base }}=59$		[kg]
Slide (plates + carriages)		$\mathrm{M}_{\text {slide }}=26$		[kg]
Beam (incl. guide rails and rack)	$q_{y}=24$		$\mathrm{q}_{\mathrm{z}}=14$	[kg/m]

Formules:

Actual load: $P_{\text {eff. }}=P_{\max }-($ Lz $-1,600) / 1,000 \bullet q_{z}<$ of $P c$
Module total weight: $\mathbf{M}_{\text {tot }}=\mathbf{M}_{\text {base }+\left(\mathbf{q}_{\mathbf{y}}{ }^{\bullet} \text { stroke }_{\mathbf{y}}+\mathbf{q}_{\mathbf{z}} \bullet \text { stroke }_{\mathbf{z}}\right) / 1,000 \quad \text { Stroke }_{\mathrm{x}} \text { and stroke }}^{\mathbf{z}}$ [mm]

Y-Axis / P / A / R / Q / 170 / Stroke / Length / FRD / ...
Z-Axis / P / A / R / P / 90 / Stroke / Length / X / FRD / ...

* For indication only, variable according to the gearbox chosen

Performances	Y-axis	Z-axis	
Max. load ($\mathrm{Pc}_{\text {max }}$) with load on axis $(\mathrm{Lz} \leq 1,600 \mathrm{~mm})$			
Max. speed	3.5	3.5	$[\mathrm{~m} / \mathrm{s}]$
Max. acceleration	10	7	$\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
Repeatability	-	$\pm 0.2^{*}$	$[\mathrm{~mm}]$
Beam max. length without joint	8000	6000	$[\mathrm{~mm}]$

Recommended max working conditions

Model							$\mathbf{M}_{\mathbf{x}}[\mathrm{Nm}]$	$\mathbf{M}_{\mathbf{y}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{z}}[\mathbf{N m}]$	$\mathbf{F}_{\mathbf{x}}[\mathrm{N}]$	$\mathbf{F}_{\mathbf{z}}[\mathrm{N}]$
PAR $2 / 1$	956	1,340	170	3,200	2,300						

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.

* Reference value considering a stroke of 1000 mm on Z axis.

Constructive data	Y-axis	Z-axis
Load-bearing beam (see page TL-12 to TL-15)	Statyca	E01-4
Rack (hardened, helical teeth, ground: module KSD)	module 3	module 2 [$\left.\mathrm{mm}^{2}\right]$
Guide rails	35×16 (hardened and polished)	28×11 (hardened and polished)
Translation	4 roller slides with 2 rollers $\varnothing 40$	4 V-shaped rollers Ø63
Room available for energy chain	115×45	75×45 [$\left.\mathrm{mm}^{2}\right]$
Pinion pitch diameter type RD	63.66 (as an alternative 89.13)	44.56 (as an alternative 63.66) [mm]
Weights	Y-axis	Z-axis
"Base" model (stroke ${ }_{\text {x }}$ and stroke ${ }_{z}=0$)	$\mathrm{M}_{\text {base }}=88 \mathrm{ap}$	[[kg]
Slide (plates + carriages)	$\mathrm{M}_{\text {slide }}=44 \mathrm{ap}$	x. [kg]
Beam (incl. guide rails and rack)	$\mathrm{q}_{\mathrm{y}}=31$ approx.	$\mathrm{q}_{\mathrm{z}}=15$ approx. $\quad[\mathrm{kg} / \mathrm{m}]$

Formules:

Actual load: $P_{\text {eff. }}=P_{\max }-(L z-1,600) / 1,000 \bullet q_{z}<$ of $P c$
Module total weight: $\mathbf{M}_{\text {tot }}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{y}} \bullet\right.$ stroke $_{\mathbf{y}}+\mathbf{q}_{\mathbf{z}} \bullet$ stroke $\left._{\mathbf{z}}\right) / 1,000 \quad$ Stroke $_{\mathrm{x}}$ and stroke ${ }_{\mathbf{z}}[\mathrm{mm}]$
TL-34

* For indication only, variable according to the gearbox chosen

Performances	Y-axis	Z-axis	
Max. load ($\mathrm{Pc}_{\text {max }}$) with load on axis ($\mathrm{Lz} \leq 1,600 \mathrm{~mm}$)			
Max. speed	3.5	3.5	[m/s]
Max. acceleration	10	7	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$
Repeatability	-	$\pm 0.1^{*}$	[mm]
Beam max. length without joint	6000	6000	[mm]

* Reference value considering a stroke of 1000 mm on Z axis.

Recommended max working conditions

Model	$\mathbf{M}_{\mathbf{x}}[\mathrm{Nm}]$	$\mathbf{M}_{\mathbf{y}}[\mathrm{Nm}]$	$\mathbf{M}_{\mathbf{z}}[\mathrm{Nm}]$	$\mathbf{F}_{\mathbf{x}}[\mathrm{N}]$	$\mathbf{F}_{\mathbf{z}}[\mathrm{N}]$
PASM $2 / 11,170$	1,440	320	3,200	2,300	

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.
The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

| Gonstructive data | Y-axis | Z-axis | |
| :--- | :--- | :--- | :--- | :--- |
| Load-bearing beam (see page TL-12 to TL-15) | Statyca | E01-4 | |
| Rack (hardened, helical teeth, ground: module KSD) | module 3 | module 2 | |
| Translation: 4 caged ball roller slides and guide rails | size 20 | size 15 | |
| Room available for energy chain | 115×45 | 75×45 | $\left[\mathrm{~mm}^{2}\right]$ |
| Pinion pitch diameter (induction-hardened, ground - RD) | 63.66 (as an alternative 89.13$)$ | 44.56 (as an alternative 63.66$)$ | $[\mathrm{mm}]$ |

Weights	Y-axis	Z-axis	
Base" model (stroke ${ }_{\text {a }}$ and stroke ${ }_{z}=0$)		$\mathrm{M}_{\text {base }}=89$ approx.	[kg]
Slide (plates + carriages)		$\mathrm{M}_{\text {slide }}=43$ approx	[kg]
Beam (incl. guide rails and rack)	$\mathrm{q}_{\mathrm{y}}=29$ approx.	$\mathrm{q}_{z}=14$ approx.	[kg/m]

Formules:

Actual load: $P_{\text {eff. }}=P_{\max }-(L z-1,600) / 1,000 \bullet q_{z}<$ of $P c$
Module total weight: $\mathbf{M}_{\text {tot }}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{y}} \bullet \mathbf{s t r o k e}_{\mathbf{y}}+\mathbf{q}_{\mathbf{z}} \bullet\right.$ stroke $\left._{\mathbf{z}}\right) / 1,000 \quad$ Stroke $_{\mathrm{x}}$ and stroke ${ }_{\mathbf{z}}[\mathrm{mm}]$

Y-Axis / P / A / R / Q / 200 / Stroke / Length / FRD / ..
Z-Axis / P / A / R / Q / 100 / Stroke / Length / X / FRD / ...

High Cycle Rate Low Cycle Rate

* For indication only, variable according to the gearbox chosen

Recommended max working conditions

Model	$\mathbf{M}_{\mathbf{x}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{y}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{z}}[\mathbf{N m}]$	$\mathbf{F}_{\mathbf{x}}[\mathrm{N}]$	$\mathbf{F}_{\mathbf{z}}[\mathrm{N}]$
PAR 3/1	1,115	1,520	352	3,200	2,400

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.

* Reference value considering a stroke of 1000 mm on Z axis.

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page TL-12 to TL-15)	Valyda	MA1-5	
Rack (hardened, helical teeth, ground: module KSD)	module 3	module 3	$\left[\mathrm{mm}^{2}\right]$
Guide rails	35×16 (hardened and polished)	35×16 (hardened and polished)	
Translation	4 roller slides with 4 rollers $\varnothing 40$	2 roller slides with 4 rollers $\varnothing 40$	
Room available for energy chain	115×45	75×45	$\left[\mathrm{~mm}^{2}\right]$
Pinion pitch diameter type RD	63.66 (as an alternative 89.13$)$	63.66 (as an alternative 89.13$)$	$[\mathrm{mm}]$

Weights	Y-axis	Z-axis	
"Base" model (stroke ${ }_{\mathrm{x}}$ and stroke ${ }_{\mathrm{z}}=0$)	$\mathrm{M}_{\text {base }}=111$ approx.		[kg]
Slide (plates + carriages)	$\mathrm{M}_{\text {slide }}=54$ approx.		[kg]
Beam (incl. guide rails and rack)	$\mathrm{q}_{\mathrm{y}}=35$ approx.	$\mathrm{q}_{\mathrm{z}}=24$ approx.	[kg/m]

Formules:

Actual load: $P_{\text {eff. }}=P_{\max }-(L z-1,600) / 1,000 \bullet q_{z}<$ of $P c$
Module total weight: $\mathbf{M}_{\text {tot }}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{y}} \bullet\right.$ stroke $_{\mathrm{y}}+\mathbf{q}_{\mathrm{z}} \bullet$ stroke $\left._{\mathrm{z}}\right) / 1,000 \quad$ Stroke $_{\mathrm{x}}$ and stroke ${ }_{\mathrm{z}}[\mathrm{mm}]$

* For indication only, variable according to the gearbox chosen

PC $\quad 100 \mathrm{Kg}$
High Cycle Rate Low Cycle Rate

Recommended max working conditions

Model	$\mathbf{M}_{\mathbf{x}}[\mathrm{Nm}]$	$\mathbf{M}_{\mathbf{y}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{z}}[\mathbf{N m}]$	$\mathbf{F}_{\mathbf{x}}[\mathrm{N}]$	$\mathbf{F}_{\mathbf{z}}[\mathrm{N}]$
PASM $3 / 1$	1,280	1,890	485	3,200	2,400

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.
The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

| Constructive data | Y-axis | Z-axis | |
| :--- | :--- | :--- | :--- | :--- |
| Load-bearing beam (see page TL-12 to TL-15) | Valyda | MA1-5 | |
| Rack (hardened, helical teeth, ground: module KSD) | module 3 | module 3 | |
| Translation: 4 caged ball roller slides and guide rails | size 20 | size 20 | $\left[\mathrm{~mm}^{2}\right]$ |
| Room available for energy chain | 115×45 | 75×45 | $\left[\mathrm{~mm}^{2}\right]$ |
| Pinion pitch diameter (induction-hardened, ground - RD) | 63.66 (as an alternative 89.13$)$ | 63.66 (as an alternative 89.13$)$ | $[\mathrm{mm}]$ |

Weights	Y-axis	Z-axis	
Base" model (stroke $^{\text {a }}$ and stroke ${ }_{z}=0$)	$\mathrm{M}_{\text {base }}=100$ approx.		[kg]
Slide (plates + carriages)	$\mathrm{M}_{\text {slide }}=45$ approx.		[kg]
Beam (incl. guide rails and rack)	$\mathrm{q}_{\mathrm{y}}=33$ approx.	$\mathrm{q}_{\mathrm{z}}=21$ approx.	[kg/m]

Formules:

Actual load: $P_{\text {eff. }}=P_{\max }-(L z-1,600) / 1,000 \bullet q_{z}<$ of $P c$ Module total weight: $\mathbf{M}_{\text {tot }}=\mathbf{M}_{\text {base }+\left(\mathbf{q}_{\mathbf{y}} \bullet \text { stroke }_{\mathbf{y}}+\mathbf{q}_{\mathbf{z}} \bullet \text { stroke }_{\mathbf{z}}\right) / 1,000 \quad \text { Stroke }_{\mathrm{x}} \text { and stroke }}^{\mathbf{z}}$ [mm]

Y-Axis / P / A / R / P /200 / Stroke / Length / FRD /
Z-Axis / P / A / R / Q / 100 / Stroke / Length / X / FRD / ...

* For indication only, variable according to the gearbox chosen

Performances	Y-axis Max. load $\left(\mathrm{Pc}_{\text {max }}\right)$ with load on axis (Lz $\leq 1,600 \mathrm{~mm})$		
Max. speed	3	3	$[\mathrm{~m} / \mathrm{s}]$
Max. acceleration	7	7	$\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
Repeatability	-	$\pm 0.25^{*}$	$[\mathrm{~mm}]$
Beam max. length without joint	12000	6000	$[\mathrm{~mm}]$

* Reference value considering a stroke of 1000 mm on Z axis.

Recommended max working conditions Rodel	$\mathbf{M}_{\mathbf{x}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{y}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{z}}[\mathbf{N m}]$	$\mathbf{F}_{\mathbf{x}}[\mathbf{N}]$	$\mathbf{F}_{\mathbf{z}}[\mathbf{N}]$
PAR $4 / 1$	1520	1520	352	4250	2400

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page TL-12 to TL-15)	Valyda	MA1-5	
Rack (hardened, helical teeth, ground: module KSD)	module 4	module 3	$\left[\mathrm{mm}^{2}\right]$
Guide rails	55×25 (hardened and polished)	35×16 (hardened and polished)	
Translation	4 roller slides with 4 rollers $\varnothing 52$	2 roller slides with 4 rollers $\varnothing 40$	
Room available for energy chain	115×45	75×45	$\left[\mathrm{~mm}^{2}\right]$
Pinion pitch diameter type RD	76.39 (as an alternative 106.10)	63.66 (as an alternative 89.13$)$	$[\mathrm{mm}]$

Weights	Y-axis	Z-axis	
"Base" model (stroke $_{\mathrm{x}}$ and stroke $_{\mathrm{z}}=0$)	$\mathrm{M}_{\text {base }}=140$ approx.		[kg]
Slide (plates + carriages)	$\mathrm{M}_{\text {slide }}=69$ approx.		[kg]
Beam (incl. guide rails and rack)	$\mathrm{q}_{\mathrm{y}}=48$ approx.	$\mathrm{q}_{\mathrm{z}}=24$ approx.	[kg/m]

Formules:

Actual load: $P_{\text {eff. }}=P_{\max }-(L z-1,600) / 1,000 \bullet q_{z}<$ of $P c$
Module total weight: $\mathbf{M}_{\text {tot }}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{y}}{ }^{\bullet}\right.$ stroke $_{\mathbf{y}}+\mathbf{q}_{\mathbf{z}} \bullet$ stroke $\left._{\mathbf{z}}\right) / 1,000 \quad$ Stroke $_{\mathrm{x}}$ and stroke ${ }_{\mathbf{z}}[\mathrm{mm}]$
TL-38

Y-Axis / P / A / S / M / 200 / Stroke / Length / FRD / ...
Z-Axis / P / A / S / M / 100 / Stroke / Length / X / FRD / ...

High Cycle Rate Low Cycle Rate

* For indication only, variable according to the gearbox chosen

Recommended max working conditions

Model	$\mathbf{M}_{\mathbf{x}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{y}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{z}}[\mathrm{Nm}]$	$\mathbf{F}_{\mathbf{x}}[\mathbf{N}]$	$\mathbf{F}_{\mathbf{z}}[\mathrm{N}]$
PASM 4/1	1,700	1,890	485	4,250	2,400

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.
The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

| Constructive data | Y-axis | Z-axis | |
| :--- | :--- | :--- | :--- | :--- |
| Load-bearing beam (see page TL-12 to TL-15) | Valyda | MA1-5 | |
| Rack (hardened, helical teeth, ground: module KSD) | module 4 | module 3 | $\left[\mathrm{mm}^{2}\right]$ |
| Translation: 4 caged ball roller slides and guide rails | size 25 | size 20 | |
| Room available for energy chain | 115×45 | 75×45 | $\left[\mathrm{~mm}^{2}\right]$ |
| Pinion pitch diameter (induction-hardened, ground - RD) | 76.39 (as an alternative 106.10) | 63.66 (as an alternative 89.13$)$ | $[\mathrm{mm}]$ |

Weights	Y-axis	Z-axis	
Base" model $\left(\right.$ stroke $_{x}{\left.\text { and } \text { stroke }_{\mathrm{z}}=0\right)}$ $\mathrm{M}_{\text {base }}=121$ approx. $[\mathrm{kg}]$ Slide (plates + carriages) $\mathrm{M}_{\text {slide }}=59$ approx. $[\mathrm{kg}]$ Beam (incl. guide rails and rack) $\mathrm{q}_{\mathrm{y}}=40$ approx. $\mathrm{q}_{\mathrm{z}}=21$ approx. $[\mathrm{kg} / \mathrm{m}]$ l			

Formules:

Actual load: $P_{\text {eff. }}=P_{\max }-(L z-1,600) / 1,000 \bullet q_{z}<$ of $P c$
Module total weight: $\mathbf{M}_{\text {tot }}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{y}} \bullet\right.$ stroke $_{\mathbf{y}}+\mathbf{q}_{\mathbf{z}} \bullet$ stroke $\left._{\mathbf{z}}\right) / 1,000 \quad$ Stroke $_{\mathrm{x}}$ and stroke ${ }_{\mathbf{z}}[\mathrm{mm}]$

Y-Axis / P / A / R / P / 220 / Stroke / Length / FRD / ...
Z-Axis / P / A / R / Q / 170 / Stroke / Length / X / FRD / ...

PC

$\frac{\text { PC }}{\square}$

* For indication only, variable according to the gearbox chosen

Recommended max working conditions

Model	$\mathbf{M}_{\mathbf{x}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{y}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{z}}[\mathbf{N m}]$	$\mathbf{F}_{\mathbf{x}}[\mathbf{N}]$	$\mathbf{F}_{\mathbf{z}}[\mathbf{N}]$
PAR 5/2	1,520	1,520	580	4,670	3,580

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.

* Reference value considering a stroke of 1000 mm on Z axis.

Constructive data	Y-axis	Z-axis
Load-bearing beam (see page TL-12 to TL-15)	Logyca	Statyca
Rack (hardened, helical teeth: module KSD)	module 4	module 3 [mm²]
Guide rails	55×25 (hardened and polished)	35×16 (hardened and polished)
Translation	4 roller slides with 4 rollers $\varnothing 62$	4 roller slides with 2 rollers Ø 040
Room available for energy chain	115×45	75×45 [$\left.\mathrm{mm}^{2}\right]$
Pinion pitch diameter type RD	76.39 (as an alternative 106.10)	63.66 (as an alternative 89.13) [mm]
Weights	Y-axis	Z-axis
"Base" model (stroke $_{\text {x }}$ and stroke ${ }_{2}=0$)	$\mathrm{M}_{\text {base }}=195$ approx.	[kg]
Slide (plates + carriages)	$\mathrm{M}_{\text {slide }}=98$ approx.	[kg]
Beam (incl. guide rails and rack)	$\mathrm{q}_{\mathrm{y}}=52$ approx.	$\mathrm{q}_{\mathrm{z}}=31$ approx. $\quad[\mathrm{kg} / \mathrm{m}]$

Formules:

Actual load: $P_{\text {eff. }}=P_{\max }-(L z-1,600) / 1,000 \bullet q_{z}<$ of $P c$
Module total weight: $\mathbf{M}_{\text {tot }}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{y}}{ }^{\bullet}\right.$ stroke $_{\mathbf{y}}+\mathbf{q}_{\mathbf{z}}{ }^{\bullet}$ stroke $\left._{\mathbf{z}}\right) / 1,000 \quad$ Stroke $_{\mathrm{x}}$ and stroke ${ }_{\mathbf{z}}[\mathrm{mm}]$
TL-40

* For indication only, variable according to the gearbox chosen

Recommended max working conditions

Model	$\mathbf{M}_{\mathbf{x}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{y}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{z}}[\mathbf{N m}]$	$\mathbf{F}_{\mathbf{x}}[\mathbf{N}]$	$\mathbf{F}_{\mathbf{z}}[\mathbf{N}]$
PASM 5/2	2,060	3,320	1,210	4,670	3,580

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.
The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

| Constructive data | Y-axis | Z-axis | |
| :--- | :--- | :--- | :--- | :--- |
| Load-bearing beam (see page TL-12 to TL-15) | Logyca | Statyca | |
| Rack (hardened, helical teeth, ground: module KSD) | module 4 | module 3 | |
| Translation: 4 caged ball roller slides and guide rails | size 25 | size 25 | |
| Room available for energy chain | 115×45 | 75×45 | $\left[\mathrm{~mm}^{2}\right]$ |
| Pinion pitch diameter (induction-hardened, ground - RD) | 76.39 (as an alternative 106.10) | 63.66 (as an alternative 89.13$)$ | $[\mathrm{mm}]$ |

Weights	Y-axis	Z-axis	
Base" model (stroke ${ }_{\text {x }}$ and stroke ${ }_{\mathrm{z}}=0$)	$\mathrm{M}_{\text {base }}=178$ approx.		[kg]
Slide (plates + carriages)	$\mathrm{M}_{\text {slide }}=95$ approx.		[kg]
Beam (incl. guide rails and rack)	$\mathrm{q}_{\mathrm{y}}=44$ approx.	$\mathrm{q}_{\mathrm{z}}=29$ approx.	[kg/m]

Formules:

Actual load: $P_{\text {eff. }}=P_{\max }-(L z-1,600) / 1,000 \bullet q_{z}<$ of $P c$
Module total weight: $\mathbf{M}_{\mathbf{t o t}}=\mathbf{M}_{\text {base }+\left(\mathbf{q}_{\mathbf{y}} \bullet{ }^{\bullet} \text { troke } \mathbf{y}_{\mathbf{y}}+\mathbf{q}_{\mathbf{z}} \bullet \text { stroke }_{\mathbf{z}}\right) / \mathbf{1 , 0 0 0} \quad \text { Stroke }_{\mathrm{x}} \text { and stroke }}^{\mathbf{z}}$ [mm]

Y-Axis / P / A / R / P / 280 / Stroke / Length / FRD / ...
Z-Axis / P / A / R / Q / 200 / Stroke / Length / X / FRD / ...

PC
 High ycyle Rate Low Cycle Rate

* For indication only, variable according to the gearbox chosen

Recommended max working conditions

Model	$\mathbf{M}_{\mathbf{x}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{y}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{z}}[\mathbf{N m}]$	$\mathbf{F}_{\mathbf{x}}[\mathbf{N}]$	$\mathbf{F}_{\mathbf{z}}[\mathrm{N}]$
PAR 6/2	1,520	1,520	670	3,585	3,665

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.

* Reference value considering a stroke of 1000 mm on Z axis.

Constructive data	Y-axis	Z-axis
Load-bearing beam (see page TL-12 to TL-15)	Pratyca	Valyda
Rack (hardened, helical teeth, ground: module KSD)	module 4	module 3 [$\left.\mathrm{mm}^{2}\right]$
Guide rails	55×25 (hardened and polished)	35×16 (hardened and polished)
Translation	4 roller slides with 4 rollers Ø62	2 roller slides with 4 rollers Ø 040
Room available for energy chain	175×45	75×45 [mm^{2}]
Pinion pitch diameter type RD	76.39 (as an alternative 106.10)	63.66 (as an alternative 89.13) [mm]
Weights	Y-axis	Z-axis
"Base" model (stroke $_{\text {x }}$ and stroke ${ }_{2}=0$)	$\mathrm{M}_{\text {base }}=220$ approx.	[kg]
Slide (plates + carriages)	$\mathrm{M}_{\text {slide }}=99$ approx.	[kg]
Beam (incl. guide rails and rack)	$\mathrm{q}_{\mathrm{y}}=66$ approx.	$\mathrm{q}_{\mathrm{z}}=35$ approx. $\quad[\mathrm{kg} / \mathrm{m}]$

Formules:

Actual load: $P_{\text {eff. }}=P_{\max }-(L z-1,600) / 1,000 \bullet q_{z}<$ of $P c$
Module total weight: $\mathbf{M}_{\text {tot }}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{y}}{ }^{\bullet}\right.$ stroke $_{\mathbf{y}}+\mathbf{q}_{\mathbf{z}} \bullet$ stroke $\left._{\mathbf{z}}\right) / 1,000 \quad$ Stroke $_{\mathrm{x}}$ and stroke ${ }_{\mathbf{z}}[\mathrm{mm}]$
TL-42
Y-Axis / P / A / S / M / 280 / Stroke / Length / FRD / ...
Z-Axis / P / A / S / M / 200 / Stroke / Length / X / FRD / ...
100 Kg
PC High Cycle Rate Low Cycle Rate

* For indication only, variable according to the gearbox chosen

Performances	Y-axis	Z-axis	
Max. load ($\mathrm{Pc}_{\max }$) with load on axis ($\mathrm{Lz} \leq 1,600 \mathrm{~mm}$)			
Max. speed	3	3	[m/s]
Max. acceleration	4	4	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$
Repeatability	-	$\pm 0.1^{*}$	[mm]
Beam max. length without joint	12000	12000	[mm]

* Reference value considering a stroke of 1000 mm on Z axis.

Recommended max working conditions

Model	$\mathbf{M}_{\mathbf{x}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{y}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{z}}[\mathbf{N m}]$	$\mathbf{F}_{\mathbf{x}}[\mathbf{N}]$	$\mathbf{F}_{\mathbf{z}}[\mathbf{N}]$
PASM 6/2	3,000	3,310	1,375	3,585	3,665

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.
The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

| Constructive data | Y-axis | Z-axis | |
| :--- | :--- | :--- | :--- | :--- |
| Load-bearing beam (see page TL-12 to TL-15) | Pratyca | Valyda | |
| Rack (hardened, helical teeth, ground: module KSD) | module 4 | module 3 | |
| Translation: 4 caged ball roller slides and guide rails | size 30 | size 25 | |
| Room available for energy chain | 175×45 | 75×45 | $\left[\mathrm{~mm}^{2}\right]$ |
| Pinion pitch diameter (induction-hardened, ground - RD) | 76.39 (as an alternative 106.10) | 63.66 (as an alternative 89.13$)$ | $[\mathrm{mm}]$ |

Weights	Y-axis	Z-axis	
Base" model $\left(\right.$ stroke $_{x}$ and stroke $_{\mathrm{z}}=0$) $\mathrm{M}_{\text {base }}=202$ approx. $[\mathrm{kg}]$ Slide (plates + carriages) $\mathrm{M}_{\text {slide }}=86$ approx. $[\mathrm{kg}]$ Beam (incl. guide rails and rack) $\mathrm{q}_{\mathrm{y}}=60$ approx. $\mathrm{q}_{z}=34$ approx. $[\mathrm{kg} / \mathrm{m}]$ l			

Formules:

Actual load: $P_{\text {eff. }}=P_{\max }-(L z-1,600) / 1,000 \bullet q_{z}<$ of $P c$
Module total weight: $\mathbf{M}_{\text {tot }}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{y}} \bullet\right.$ stroke $_{\mathbf{y}}+\mathbf{q}_{\mathbf{z}} \bullet$ stroke $\left._{\mathbf{z}}\right) / 1,000 \quad$ Stroke $_{\mathrm{x}}$ and stroke ${ }_{\mathbf{z}}[\mathrm{mm}]$

Y-Axis / P / A / R / P / 280 / Stroke / Length / FRD / ...
Z-Axis / P / A / R / P / 200 / Stroke / Length / X / FRD / ...

* For indication only, variable according to the gearbox chosen

Performances	Y-axis	Z-axis	
Max. load ($\mathrm{Pc}_{\text {max }}$) with load on axis ($\mathrm{Lz} \leq 1,600 \mathrm{~mm}$)			
Max. speed	3	2	[m/s]
Max. acceleration	4	3	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$
Repeatability	-	± 0.25 *	[mm]
Beam max. length without joint	12000	12000	[mm]

* Reference value considering a stroke of 1000 mm on Z axis.

Recommended max working conditions

Model	$\mathbf{M}_{\mathbf{x}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{y}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{z}}[\mathbf{N m}]$	$\mathbf{F}_{\mathbf{x}}[\mathbf{N}]$	$\mathbf{F}_{\mathbf{z}}[\mathrm{N}]$
PAR	$6 / 4$	2,435	2,435	1,200	3,585
6,350					

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.

Constructive data	Y-axis	Z-axis
Load-bearing beam (see page TL-12 to TL-15)	Pratyca	Valyda
Rack (hardened, helical teeth, ground: module KSD)	module 4	module 4 [$\left.\mathrm{mm}^{2}\right]$
Guide rails	55×25 (hardened and polished)	55×25 (hardened and polished)
Translation	4 roller slides with 4 rollers $\varnothing 62$	4 roller slides with 4 rollers $\varnothing 52$
Room available for energy chain	175×45	75×45 [mm^{2}]
Pinion pitch diameter type RD	76.39 (as an alternative 106.10)	76.39 (as an alternative 106.10) [mm]
Weights	Y-axis	Z-axis
"Base" model (stroke $_{\mathrm{x}}$ and stroke ${ }_{\mathrm{z}}=0$)	$\mathrm{M}_{\text {base }}=244$ approx.	[kg]
Slide (plates + carriages)	$\mathrm{M}_{\text {slide }}=112$ approx.	[kg]
Beam (incl. guide rails and rack)	$\mathrm{q}_{\mathrm{y}}=66$ approx.	$\mathrm{q}_{\mathrm{z}}=48$ approx. $\quad[\mathrm{kg} / \mathrm{m}]$

Formules:

Actual load: $P_{\text {eff. }}=P_{\max }-(L z-1,600) / 1,000 \bullet q_{z}<$ of $P c$
Module total weight: $\mathbf{M}_{\text {tot }}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{y}}{ }^{\bullet}\right.$ stroke $_{\mathbf{y}}+\mathbf{q}_{\mathbf{z}} \bullet$ stroke $\left._{\mathbf{z}}\right) / 1,000 \quad$ Stroke $_{\mathrm{x}}$ and stroke ${ }_{\mathbf{z}}[\mathrm{mm}]$
TL-44
Y-Axis / P / A / S / M / 280 / Stroke / Length / FRD / ...
Z-Axis / P / A / S / M / 200 / Stroke / Length / X / FRD / ...

* For indication only, variable according to the gearbox chosen

Recommended max working conditions					
Model	$\mathrm{M}_{\mathrm{x}}[\mathrm{Nm}]$	$\mathbf{M}_{\mathbf{y}}[\mathrm{Nm}]$	$\mathbf{M z}_{\mathbf{z}}$ [Nm]	$\mathrm{F}_{\mathrm{x}}[\mathrm{N}]$	$\mathrm{F}_{\mathrm{z}}[\mathrm{N}]$
PASM 6/4	3,000	3,310	1,375	3,585	6,350

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.
The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

| Constructive data | Y-axis | Z-axis |
| :--- | :--- | :--- | :--- |
| Load-bearing beam (see page TL-12 to TL-15) | Pratyca | Valyda |
| Rack (hardened, helical teeth, ground: module KSD) | module 4 | module 4 |
| Translation: 4 caged ball roller slides and guide rails | size 30 | size 25 |
| Room available for energy chain | 175×45 | 75×45 |
| Pinion pitch diameter (induction-hardened, ground - RD) | 76.39 (as an alternative 106.10) | 76.39 (as an alternative 106.10) [mm] |

Weights	Y-axis	Z-axis	
Base" model $\left(\right.$ stroke $_{x}$ and stroke $\left._{\mathrm{z}}=0\right)$ $\mathrm{M}_{\text {base }}=217$ approx. $[\mathrm{kg}]$ Slide (plates + carriages) $\mathrm{M}_{\text {slide }}=105$ approx. $[\mathrm{kg}]$ Beam (incl. guide rails and rack) $\mathrm{q}_{\mathrm{y}}=60$ approx. $\mathrm{q}_{\mathrm{z}}=39$ approx. $[\mathrm{kg} / \mathrm{m}]$ l			

Formules:

Actual load: $P_{\text {eff. }}=P_{\max }-(L z-1,600) / 1,000 \bullet q_{z}<$ of $P c$
Module total weight: $\mathbf{M}_{\text {tot }}=\mathbf{M}_{\text {base }+\left(\mathbf{q}_{\mathbf{y}} \bullet \text { stroke }_{\mathbf{y}}+\mathbf{q}_{\mathbf{z}} \bullet \text { stroke }_{\mathbf{z}}\right) / 1,000 \quad \text { Stroke }_{\mathrm{X}} \text { and stroke }}^{\mathbf{z}}$ [mm]

Y-Axis / P / A / R / P / 280 / Stroke / Length / FRD / ...
Z-Axis / P / A / R / P / 200 / Stroke / Length / X / FRD / ...

PC
High Cycle Rate Low Cycle Rate

Performances	Y-axis	Z-axis	
Max. load ($\mathrm{Pc}_{\text {max }}$) with load on axis ($\mathrm{Lz} \leq 1,600 \mathrm{~mm}$)			
Max. speed	2.5	2	[m/s]
Max. acceleration	2.5	3	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$
Repeatability	-	± 0.25 *	[mm]
Beam max. length without joint	12000	12000	[mm]

* Reference value considering a stroke of 1000 mm on Z axis.

Recommended max working conditions

Model	$\mathbf{M}_{\mathbf{x}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{y}}[\mathrm{Nm}]$	$\mathbf{M}_{\mathbf{z}}[\mathbf{N m}]$	$\mathbf{F}_{\mathbf{x}}[\mathbf{N}]$	$\mathbf{F}_{\mathbf{z}}[\mathrm{N}]$
PAR 8/3	1520	1520	670	3100	4740

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.
The values shown can be achieved with roller slides with 6 rollers suitable for maximum performance (see page TL-63-TL-64).

Constructive data	Y-axis	Z-axis
Load-bearing beam (see page TL-12 to TL-15)	Pratyca	Valyda
Rack (hardened, helical teeth, ground: module KSD)	module 4	module 3 [mm^{2}]
Guide rails	55×25 (hardened and polished)	35×16 (hardened and polished)
Translation	4 roller slides with 6 rollers $\varnothing 62$	2 roller slides with 4 rollers $\varnothing 40$
Room available for energy chain	175×45	75x45 [mm $\left.{ }^{2}\right]$
Pinion pitch diameter type RD	76.39 (as an alternative 106.10)	63.66 (as an alternative 89.13) [mm]
Weights	Y-axis	Z-axis
"Base" model (stroke $_{\mathrm{x}}$ and stroke ${ }_{\mathrm{z}}=0$)	$\mathrm{M}_{\text {base }}=232$ approx.	[kg]
Slide (plates + carriages)	$\mathrm{M}_{\text {slide }}=111$ approx.	[kg]
Beam (incl. guide rails and rack)	$\mathrm{q}_{\mathrm{y}}=66$ approx.	$\mathrm{q}_{\mathrm{z}}=35$ approx. $\quad[\mathrm{kg} / \mathrm{m}]$

Formules:

Actual load: $P_{\text {eff. }}=P_{\text {max }}-(L z-1,600) / 1,000 \bullet q_{z}<$ of $P c$
Module total weight: $\mathbf{M}_{\text {tot }}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{y}}{ }^{\bullet}\right.$ stroke $_{\mathbf{y}}+\mathbf{q}_{\mathbf{z}} \bullet$ stroke $\left._{\mathbf{z}}\right) / 1,000 \quad$ Stroke $_{\mathrm{x}}$ and stroke ${ }_{\mathbf{z}}[\mathrm{mm}]$
TL-46

* For indication only, variable according to the gearbox chosen

Performances	Y-axis	Z-axis	
Max. load (Pc $\max)$ with load on axis	$(\mathrm{Lz} \leq 1,600 \mathrm{~mm})$		
Max. speed	2.5	2	$[\mathrm{~m} / \mathrm{s}]$
Max. acceleration	2.5	3	$\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
Repeatability	-	$\pm 0.1^{*}$	$[\mathrm{~mm}]$
Beam max. length without joint	12000	12000	$[\mathrm{~mm}]$

* Reference value considering a stroke of 1000 mm on Z axis.

Recommended max working conditions

Model	$\mathbf{M}_{\mathbf{x}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{y}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{z}}[\mathbf{N m}]$	$\mathbf{F}_{\mathbf{x}}[\mathbf{N}]$	$\mathbf{F}_{\mathbf{z}}[\mathrm{N}]$
PASM 8/3	3,000	3,310	1,375	3,100	4,740

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.
The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

| Constructive data | Y-axis | Z-axis | |
| :--- | :--- | :--- | :--- | :--- |
| Load-bearing beam (see page TL-12 to TL-15) | Pratyca | Valyda | |
| Rack (hardened, helical teeth, ground: module KSD) | module 4 | module 3 | |
| Translation: 4 caged ball roller slides and guide rails | size 35 | size 25 | |
| Room available for energy chain | 175×45 | 75×45 | $\left[\mathrm{~mm}^{2}\right]$ |
| Pinion pitch diameter (induction-hardened, ground - RD) | 76.39 (as an alternative 106.10) | 63.66 (as an alternative 89.13$)$ | $[\mathrm{mm}]$ |

Weights	Y-axis	Z-axis	
Base" model $\left(\right.$ stroke $_{x}$ and stroke $\left._{\mathrm{z}}=0\right)$ $\mathrm{M}_{\text {base }}=220$ approx. $[\mathrm{kg}]$ Slide (plates + carriages) $\mathrm{M}_{\text {slide }}=102$ approx. $[\mathrm{kg}]$ Beam (incl. guide rails and rack) $\mathrm{q}_{\mathrm{y}}=64$ approx. $\mathrm{q}_{\mathrm{z}}=34$ approx. $[\mathrm{kg} / \mathrm{m}]$ l			

Formules:

Actual load: $P_{\text {eff. }}=P_{\max }-(L z-1,600) / 1,000 \bullet q_{z}<$ of $P c$
Module total weight: $\mathbf{M}_{\text {tot }}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{y}} \bullet\right.$ stroke $_{\mathbf{y}}+\mathbf{q}_{\mathbf{z}} \bullet$ stroke $\left._{\mathbf{z}}\right) / 1,000 \quad$ Stroke $_{\mathrm{x}}$ and stroke ${ }_{\mathbf{z}}[\mathrm{mm}]$

Y-Axis / P / A / R / P / 280 / Stroke / Length / FRD / ..
Z-Axis / P / A / R / P / 220 / Stroke / Length / X / FRD / ...

* For indication only, variable according to the gearbox chosen

PC
High Cycle Rate Low Cycle Rate
600 Kg

Performances	Y-axis	Z-axis	
Max. load ($\mathrm{Pc}_{\text {max }}$) with load on axis ($\mathrm{Lz} \leq 1,600 \mathrm{~mm}$)			
Max. speed	,	2	[m/s]
Max. acceleration	2	2	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$
Repeatability	-	± 0.25 *	[mm]
Beam max. length without joint	12000	12000	[mm]

* Reference value considering a stroke of 1000 mm on Z axis.

Recommended max working conditions

Model	$\mathbf{M}_{\mathbf{x}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{y}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{z}}[\mathbf{N m}]$	$\mathbf{F}_{\mathbf{x}}[\mathbf{N}]$	$\mathbf{F}_{\mathbf{z}}[\mathbf{N}]$
PAR 8/6	2,430	2,430	1,200	3,220	8,400

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.
The values shown can be achieved with roller slides with 6 rollers suitable for maximum performance (see page TL-63-TL-64).

Constructive data	Y-axis	Z-axis
Load-bearing beam (see page TL-12 to TL-15)	Pratyca	Logyca
Rack (hardened, helical teeth, ground: module KSD)	module 4	module 4 [mm²]
Guide rails	55×25 (hardened and polished)	55×25 (hardened and polished)
Translation	4 roller slides with 6 rollers Ø62	2 roller slides with 6 rollers $\varnothing 52$
Room available for energy chain	175×45	75×45 [$\left.\mathrm{mm}^{2}\right]$
Pinion pitch diameter type RD	76.39 (as an alternative 106.10)	76.39 (as an alternative 106.10) [mm]
Weights	Y-axis	Z-axis
"Base" model (stroke $_{\mathrm{x}}$ and stroke ${ }_{\mathrm{z}}=0$)	$\mathrm{M}_{\text {base }}=260$ approx.	[kg]
Slide (plates + carriages)	$\mathrm{M}_{\text {slide }}=122$ approx.	[kg]
Beam (incl. guide rails and rack)	$\mathrm{q}_{\mathrm{y}}=66$ approx.	$\mathrm{q}_{\mathrm{z}}=52$ approx. $\quad[\mathrm{kg} / \mathrm{m}]$

Formules:

Actual load: $P_{\text {eff. }}=P_{\max }-(L z-1,600) / 1,000 \bullet q_{z}<$ of $P c$
Module total weight: $\mathbf{M}_{\text {tot }}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{y}}{ }^{\bullet}\right.$ stroke $_{\mathbf{y}}+\mathbf{q}_{\mathbf{z}} \bullet$ stroke $\left._{\mathbf{z}}\right) / 1,000 \quad$ Stroke $_{\mathrm{x}}$ and stroke ${ }_{\mathbf{z}}[\mathrm{mm}]$
TL-48
Y-Axis / P / A / S / M / 280 / Stroke / Length / FRD / ...
Z-Axis / P / A / S / M / 220 / Stroke / Length / X / FRD / ...
250 Kg

Performances	Y-axis	Z-axis	
Max. load ($\mathrm{Pc}_{\text {max }}$) with load on axis ($\mathrm{Lz} \leq 1,600 \mathrm{~mm}$)			
Max. speed	2	2	[m/s]
Max. acceleration	2	2	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$
Repeatability	-	± 0.15 *	[mm]
Beam max. length without joint	12000	12000	[mm]

* Reference value considering a stroke of 1000 mm on Z axis.

Recommended max working conditions

Model	$\mathbf{M}_{\mathbf{x}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{y}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{z}}[\mathbf{N m}]$	$\mathbf{F}_{\mathbf{X}}[\mathbf{N}]$	$\mathbf{F}_{\mathbf{z}}[\mathbf{N}]$
PASM $8 / 6$	4,330	4,790	2,090	3,220	8,400

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.
The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

| Constructive data | Y-axis | Z-axis | |
| :--- | :--- | :--- | :--- | :--- |
| Load-bearing beam (see page TL-12 to TL-15) | Pratyca | Logyca | |
| Rack (hardened, helical teeth, ground: module KSD) | module 4 | module 4 | |
| Translation: 4 caged ball roller slides and guide rails | size 35 | size 30 | |
| Room available for energy chain | 175×45 | 75×45 | $\left[\mathrm{~mm}^{2}\right]$ |
| Pinion pitch diameter (induction-hardened, ground - RD) | 76.39 (as an alternative 106.10) | 76.39 (as an alternative 89.13$)$ | $[\mathrm{mm}]$ |

Weights	Y-axis	Z-axis	
Base" model (stroke ${ }_{\text {x }}$ and stroke ${ }_{\mathrm{z}}=0$)	$M_{\text {base }}=234$ approx.		[kg]
Slide (plates + carriages)	$\mathrm{M}_{\text {slide }}=102$ approx.		[kg]
Beam (incl. guide rails and rack)	$\mathrm{q}_{\mathrm{y}}=64$ approx.	$\mathrm{q}_{\mathrm{z}}=46$ approx.	[kg/m]

Formules:

Actual load: $P_{\text {eff. }}=P_{\max }-(L z-1,600) / 1,000 \bullet q_{z}<$ of $P c$
Module total weight: $\mathbf{M}_{\text {tot }}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{y}} \bullet\right.$ stroke $_{\mathbf{y}}+\mathbf{q}_{\mathbf{z}} \bullet$ stroke $\left._{\mathbf{z}}\right) / 1,000 \quad$ Stroke $_{\mathrm{x}}$ and stroke ${ }_{\mathbf{z}}[\mathrm{mm}]$

Y-Axis / P / A / R / P / 360 / Stroke / Length / FRD / ..
Z-Axis / P / A / R / P / 220 / Stroke / Length / X / FRD / ...

PC
High Cycle Rate Low Cycle Rate

* For indication only, variable according to the gearbox chosen

Performances	Y-axis	Z-axis	
Max. Ioad ($\mathrm{Pc}_{\text {max }}$) with load on axis ($\mathrm{Lz} \leq 1,600 \mathrm{~mm}$)			
Max. speed	2.5	2	[m/s]
Max. acceleration	2	2	[m/s ${ }^{2}$]
Repeatability	-	± 0.25 *	[mm]
Beam max. length without joint	12000	12000	[mm]

* Reference value considering a stroke of 1000 mm on Z axis.

Recommended max working conditions

Model	$\mathbf{M}_{\mathbf{x}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{y}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{z}}[\mathbf{N m}]$	$\mathbf{F}_{\mathbf{x}}[\mathrm{N}]$	$\mathbf{F}_{\mathbf{z}}[\mathrm{N}]$
PAR $10 / 6$	2,435	2,435	1,200	3,185	8,400

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.
The values shown can be achieved with roller slides with 6 rollers suitable for maximum performance (see page TL-63-TL-64).

Constructive data	Y-axis	Z-axis
Load-bearing beam (see page TL-12 to TL-15)	Solyda	Logyca
Rack (hardened, helical teeth, ground: module KSD)	module 4	module 4 [mm²]
Guide rails	55×25 (hardened and polished)	55×25 (hardened and polished)
Translation	4 roller slides with 6 rollers Ø62	2 roller slides with 6 rollers $\varnothing 52$
Room available for energy chain	175x45	75x45 [mm²]
Pinion pitch diameter type RD	76.39 (as an alternative 106.10)	76.39 (as an alternative 106.10) [mm]
Weights	Y-axis	Z-axis
"Base" model (stroke $_{\text {x }}$ and stroke ${ }_{\mathrm{z}}=0$)	$\mathrm{M}_{\text {base }}=283$ approx.	[kg]
Slide (plates + carriages)	$\mathrm{M}_{\text {slide }}=122$ approx.	[kg]
Beam (incl. guide rails and rack)	$\mathrm{q}_{\mathrm{y}}=85$ approx.	$\mathrm{q}_{\mathrm{z}}=52$ approx. $\quad[\mathrm{kg} / \mathrm{m}]$

Formules:

Actual load: $P_{\text {eff. }}=P_{\max }-(L z-1,600) / 1,000 \bullet q_{z}<$ of $P c$
Module total weight: $\mathbf{M}_{\text {tot }}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{y}}{ }^{\bullet}\right.$ stroke $_{\mathbf{y}}+\mathbf{q}_{\mathbf{z}} \bullet$ stroke $\left._{\mathbf{z}}\right) / 1,000 \quad$ Stroke $_{\mathrm{x}}$ and stroke ${ }_{\mathbf{z}}[\mathrm{mm}]$
TL-50

* For indication only, variable according to the gearbox chosen

Performances	Y-axis	Z-axis	
Max. load ($\mathrm{Pc}_{\max }$) with load on axis ($\mathrm{Lz} \leq 1,600 \mathrm{~mm}$)			
Max. speed	2.5	2	[m/s]
Max. acceleration	2	2	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$
Repeatability	-	$\pm 0.15^{*}$	[mm]
Beam max. length without joint	12000	12000	[mm]

* Reference value considering a stroke of 1000 mm on Z axis.

Recommended max working conditions

Model	$\mathbf{M}_{\mathbf{x}}[\mathrm{Nm}]$	$\mathbf{M}_{\mathbf{y}}[\mathrm{Nm}]$	$\mathbf{M}_{\mathbf{z}}[\mathbf{N m}]$	$\mathbf{F}_{\mathbf{x}}[\mathbf{N}]$	$\mathbf{F}_{\mathbf{z}}[\mathrm{N}]$
PASM10/6	4,560	5,050	2,090	3,185	8,400

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.
The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Constructive data	Y-axis	Z-axis
Load-bearing beam (see page TL-12 to TL-15)	Solyda	Logyca
Rack (hardened, helical teeth, ground: module KSD)	module 4	module 4 [$\left.\mathrm{mm}^{2}\right]$
Translation: 4 caged ball roller slides and guide rails	size 35	size 30
Room available for energy chain	175×45	75×45 [$\left.\mathrm{mm}^{2}\right]$
Pinion pitch diameter (induction-hardened, ground - RD)	76.39 (as an alternative 106.10)	76.39 (as an alternative 89.13) [mm]

Weights	Y-axis	Z-axis	
Base" model (stroke x${\text { and } \text { stroke }_{\mathrm{z}}=0 \text {) }}$	$\mathrm{M}_{\text {base }}=260$ approx.	$[\mathrm{kg}]$	
Slide (plates + carriages)	$\mathrm{M}_{\text {slide }}=102$ approx.	$[\mathrm{kg}]$	
Beam (incl. guide rails and rack)	$\mathrm{q}_{\mathrm{y}}=83$ approx.	$\mathrm{q}_{\mathrm{z}}=46$ approx.	$[\mathrm{kg} / \mathrm{m}]$

Formules:

Actual load: $P_{\text {eff. }}=P_{\max }-(L z-1,600) / 1,000 \bullet q_{z}<$ of $P c$
Module total weight: $\mathbf{M}_{\text {tot }}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{y}} \bullet\right.$ stroke $_{\mathbf{y}}+\mathbf{q}_{\mathbf{z}} \bullet$ stroke $\left._{\mathbf{z}}\right) / 1,000 \quad$ Stroke $_{\mathrm{x}}$ and stroke ${ }_{\mathbf{z}}[\mathrm{mm}]$

Y-Axis / P / A / R / P / 360 / Stroke / Length / FRD / ...
Z-Axis / P / A / R / P / 280 / Stroke / Length / X / FRD / ...

$$
400 \mathrm{Kg}
$$

PC
High Cycle Rate Low Cycle Rate

* For indication only, variable according to the gearbox chosen

Recommended max working conditions

Model	$\mathbf{M}_{\mathbf{x}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{y}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{z}}[\mathbf{N m}]$	$\mathbf{F}_{\mathbf{x}}[\mathrm{N}]$	$\mathbf{F}_{\mathbf{z}}[\mathrm{N}]$
PAR 10/8	6,900	7,335	4,590	3,250	11,140

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.
The values shown can be achieved with roller slides with 6 rollers suitable for maximum performance (see page TL-63-TL-64).

* Reference value considering a stroke of 1000 mm on Z axis.
** With vertical positioning of the unit, a partial load capacity
compensation is required

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page TL-12 to TL-15)	Solyda	Pratyca	
Rack (hardened, helical teeth, ground: module KSD)	module 4	module 4	$\left[\mathrm{~mm}^{2}\right]$
Guide rails	55×25 (hardened and polished)	55×25 (hardened and polished)	
Translation	4 roller slides with 6 rollers $\varnothing 62$	4 roller slides with 4 rollers $\varnothing 62$	
Room available for energy chain	175×45	75×45	$\left[\mathrm{~mm}^{2}\right]$
Pinion pitch diameter type RD	76.39 (as an alternative 106.10)	76.39 (as an alternative 106.10) $[\mathrm{mm}]$	

Weights	Y-axis	Z-axis	
"Base" model (stroke $_{\text {x }}$ and stroke ${ }_{\mathrm{z}}=0$)	$\mathrm{M}_{\text {base }}=300$ approx.		[kg]
Slide (plates + carriages)	$\mathrm{M}_{\text {slide }}=122$ approx		[kg]
Beam (incl. guide rails and rack)	$\mathrm{q}_{\mathrm{y}}=85$ approx.	$\mathrm{q}_{\mathrm{z}}=66$ approx.	[kg/m]

Formules:

Actual load: $P_{\text {eff. }}=P_{\max }-($ Lz $-1,600) / 1,000 \bullet q_{z}<$ of $P c$ Module total weight: $\mathbf{M}_{\text {tot }}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{y}} \bullet\right.$ stroke $_{\mathbf{y}}+\mathbf{q}_{\mathbf{z}} \bullet$ stroke $\left._{\mathbf{z}}\right) / 1,000 \quad$ Stroke $_{\mathrm{x}}$ and stroke ${ }_{\mathbf{z}}[\mathrm{mm}]$

Performances $\quad Y$-axis $\quad Z$-axis
Max. load ($\mathrm{Pc}_{\max }$) with load on axis ($\mathrm{Lz} \leq 1,600 \mathrm{~mm}$)

Max. speed	2	2	$[\mathrm{~m} / \mathrm{s}]$
Max. acceleration	2	2	$\left[\mathrm{~s} / \mathrm{s}^{2}\right]$
Repeatability	-	$\pm 0.15^{\star}$	$[\mathrm{mm}]$
Beam max. length without joint	12000	12000	$[\mathrm{~mm}]$

* Reference value considering a stroke of 1000 mm on Z axis.

Recommended max working conditions

Model	$\mathbf{M}_{\mathbf{x}}[\mathbf{N m}]$	$\mathbf{M}_{\mathbf{y}}[\mathrm{Nm}]$	$\mathbf{M}_{\mathbf{z}}[\mathbf{N m}]$	$\mathbf{F}_{\mathbf{x}}[\mathrm{N}]$	$\mathbf{F}_{\mathbf{z}}[\mathrm{N}]$
PASM 10/8 5,940	6,580	3,625	3,250	11,140	

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.
The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

| Constructive data | Y-axis | Z-axis | |
| :--- | :--- | :--- | :--- | :--- |
| Load-bearing beam (see page TL-12 to TL-15) | Solyda | Pratyca | |
| Rack (hardened, helical teeth, ground: module KSD) | module 4 | module 4 | $\left[\mathrm{~mm}^{2}\right]$ |
| Translation: 4 caged ball roller slides and guide rails | size 35 | size 35 | |
| Room available for energy chain | 175×45 | 75×45 | $\left[\mathrm{~mm}^{2}\right]$ |
| Pinion pitch diameter (induction-hardened, ground - RD) | 76.39 (as an alternative 106.10) | 76.39 (as an alternative 106.10$)[\mathrm{mm}]$ | |

Weights	Y-axis	Z-axis	
Base" model (stroke $^{\text {a }}$ and stroke ${ }_{\mathrm{z}}=0$)	$\mathrm{M}_{\text {base }}=275$ approx.		[kg]
Slide (plates + carriages)	$\mathrm{M}_{\text {slide }}=102$ approx.		[kg]
Beam (incl. guide rails and rack)	$\mathrm{q}_{\mathrm{y}}=83$ approx.	$\mathrm{q}_{\mathrm{z}}=64$ approx.	[kg/m]

Formules:

Actual load: $P_{\text {eff. }}=P_{\max }-(L z-1,600) / 1,000 \bullet q_{z}<$ of $P c$
Module total weight: $\mathbf{M}_{\text {tot }}=\mathbf{M}_{\text {base }}+\left(\mathbf{q}_{\mathbf{y}} \bullet\right.$ stroke $_{\mathbf{y}}+\mathbf{q}_{\mathbf{z}} \bullet$ stroke $\left._{\mathbf{z}}\right) / 1,000 \quad$ Stroke $_{\mathrm{x}}$ and stroke ${ }_{\mathbf{z}}[\mathrm{mm}]$

Steel V-shaped guide rails

Material: high-performance alloy steel: R > 900 MPa Induction-hardened and polished. Track hardness > 58 HRC
Guide rail 28.6×11 has anti-oxidation coating. Anti-oxidation coating is available for all versions upon request.

Machining: drilled guide rails with straight cut
Machining provided for guide rails with no joint. In addition to the code, please state the type of machining required by adding: \mathbf{P}_{-}- -..... V-shaped guide rails, length L, not drilled
\mathbf{P}_{-}_ -.....F V-shaped guide rails, length L, drilled

Size	Treatment	Max. Length	P	I	A	B	C	Code
$28,6 \times 11$	hardened anti-oxidation	3980	150	40	11	7	5	P28.....
35×16	Induction-hardened	4100	100	50	11	7	7.5	P35.....
55×25	Induction-hardened	4100	150	25	18	11	11.5	P55.....

Machining: drilled guide rails with 1 bevel and 1 slanting cut

Machining provided for the crop down sizes of guide rail ends with joints. In addition to the code, please state the type of machining required by adding:
$\mathbf{P}_{--}-\ldots . . \mathrm{X} \quad$-shaped guide rails with 1 slanting cut, length L, not drilled \mathbf{P}_{-}- -.....FX V-shaped guide rails with 1 slanting cut, length L, drilled

*: the first hole is drilled at a height of " γ ", subsequent ones at a centre-distance of " P ".

| Size | Treatment | Max. Length | \mathbf{P} | Y | I | A | B | C | Code |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 28.6×11 | hardened anti-oxidation | 3,850 | 150 | 50 | 50 | 11 | 7 | 5 | P28..... |
| 35×16 | Induction-hardened | 4000 | 100 | 50 | 50 | 11 | 7 | 7.5 | P35..... |
| 55×25 | Induction-hardened | 3950 | 150 | 25 | 25 | 18 | 11 | 11.5 | P55..... |

Machining: drilled guide rails with 2 slanting cuts

Machining provided for the intermediate crop down sizes of guide rail ends with multiple joints. In addition to the code, please state the type of machining required by adding:
\mathbf{P}_{-}- -.....XX V-shaped guide rails with 2 slanting cuts, length L, not drilled
\mathbf{P}_{-}- -.....FXX V-shaped guide rails with 2 slanting cuts, length L, drilled

* : in order to maintain a constant hole pitch, arrange the guide rails so that the length " L " is equal to: $\mathrm{n} \cdot \mathrm{P}+2 \cdot \mathrm{Y}$

Size	Treatment	Max. Length	\mathbf{P}	Y	A	B	C	Code
$28,6 \times 11$ indurita antioss.	3700	150	50	11	7	5	P28.....	
35×16 Induction-hardened	4000	100	50	11	7	7.5	P35.....	
55×25	Induction-hardened	3950	150	25	17	11	11.5	P55....

EXAMPLE OF ORDER: $\mathrm{n}^{\circ} 2$ pieces P55-1000FXX

$\mid L$	2 slanting cuts drilled lenght size
size	

V-shaped guide rail assembly inserts

Material: C40 galvanized steel.
A and C: suitable for medium profiles (see pages TL-14-TL-15)
B and D: suitable for load-bearing profiles (see pages TL-12 to TL-15)

*:Special drilling for M8 screws instead of M10 is required.

Guide rails		Slot side	Screw	Code
A $35 \times 16 / 28 \times 11$	8	M6x20	$\mathbf{2 0 9 . 0 2 9 8}$	
B	35×16	12.5	M6x25	$\mathbf{2 0 9 . 1 8 5 5}$
C	55×25	8	M 8×30	$\mathbf{2 0 9 . 0 4 7 9}$
D	55×25	12.5	M10×30	$\mathbf{2 0 9 . 0 4 8 0}$

Rack with helical teeth, right-hand $19^{\circ} 31^{\prime} 42^{\prime \prime}$, pressure angle 20°.

| Type | Rs | Hardness tooth | Quality | Precision |
| :--- | :---: | :---: | :---: | :---: | :---: |
| KSD CK45 norm. induction-hard., teeth and ground sides | $>650 \mathrm{~N} / \mathrm{mm}^{2}$ | \geq HRC 56 | Q6 | $0.025 \mathrm{~mm} / 300 \mathrm{~mm}$ |
| KRD AISI 9840 alloy steel induct.-hard., teeth and ground sides | $>900 \mathrm{~N} / \mathrm{mm}^{2}$ | HRC $60 \mathrm{c.a}$. | Q6 | $0.025 \mathrm{~mm} / 300 \mathrm{~mm}$ |

Mod.	H_{1}	$\mathrm{~B}_{1}$	L	I	J	d	D	C	$\mathrm{d} 1(\mathrm{H} 7)$	S	h_{1}	P	K	kg	Code
$\mathbf{2}$	24	24	500	62.5	35	7	11	7	6	8	22	125	430	2.2	$\mathbf{2 1 1 . 2 4 2 9}$
2	24	24	1,000	62.5	35	7	11	7	6	8	22	125	430	4.3	$\mathbf{2 1 1 . 2 3 6 3}$
3	29	29	500	62.5	35	10	15	9	8	9	26	125	430	3.0	$\mathbf{2 1 1 . 2 3 6 7}$
3	29	29	1,000	62.5	35	10	15	9	8	9	26	125	430	6.1	$\mathbf{2 1 1 . 2 3 5 1}$
4	39	39	500	62.5	35	10	15	9	8	12	35	125	430	5.5	$\mathbf{2 1 1 . 2 3 6 6}$
4	39	39	1,000	62.5	35	10	15	9	8	12	35	125	430	10.9	$\mathbf{2 1 1 . 2 3 4 9}$

$\mathrm{H}_{1} \mathrm{~h}_{1}$ for racks KRD, KSD
B_{1} for racks KRD, KSD

Material: 6082 clear anodized aluminium alloy

| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Pinion Gears

Helical toothed pinions ($19^{\circ} 31^{\prime} 42^{\prime \prime}$ left-hand). Pressure angle 20°.
Fig. B

| Type | Material | Surface treatment | RS | Quality | Tooth hardness |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| RD Pinion with ground helical teeth | $42 \mathrm{CrMo4}$ | temp. induction-hardened $>900 \mathrm{~N} / \mathrm{mm}^{2}$ | Q7 | HRC 58 ± 2 | |

Helical tooth pinion

mod.	Weight	\mathbf{Z}	Øp	Øi avail.	b	\mathbf{x}	Code
2	0.2	21	44.56	22	28	56	$\mathbf{2 0 1 . 0 0 0 5}$
2	0.6	30	63.66	$22,30,32$	28	56	$\mathbf{2 0 1 . 0 0 1 2}$
3	0.8	20	63.66	$22,25,30,32$	28	65	$\mathbf{2 0 1 . 0 0 0 7}$
3	1.4	28	89.13	$25,30,32$	28	65	$\mathbf{2 0 1 . 0 0 1 3}$
4	1.5	18	76.39	32	40	75	201.0009
4	2.8	25	106.10	55	40	80	$\mathbf{2 0 1 . 0 0 1 4}$

EXEMPLE OF ORDER:

code 201.0007 /RD / 25

Features and treatment

Programmable Automatic Rack Lubrication System

Grease is delivered by means of a programmable cartridge (average life: ca. 1 year) (a).
The grease is spread evenly on the racks through a felt pinion (1). You will need one kit per rack.

Table for selecting maximum operating torque
Table 1 - With lubrication guaranteed under ideal load conditions, dynamics, ($1 \mathrm{~m} / \mathrm{s}$) with rigid pinion support [Nm].

	Pinion / Racks - Helical tooth			
Module	Z [${ }^{\circ}$]	Øp [mm]	KSD	KRD
2	21	44.56	150	200
2	30	63.66	205	265
3	20	63.66	400	500
3	28	89.13	500	650
4	18	76.39	880	1000
4	25	106.1	1150	1500

Example of simplified calculation

To obtain the working torque value, divide the maximum operating torque (Tab. 1) by the safety factor (Tab. 2). Intermediate values can be adjusted according to the application.
Motion (A) = High shock 1.75
Speed (B) = Low 1
Lubrication (C) = Constant 0.9
Rack = module 3 KSD
Pinion $=\emptyset p 63.66(400 \mathrm{Nm})$
Safety factor $=A \times B \times C=1.575$

Motion (A)	Speed (B)	Lubrcation (C)	Safety fac. (AxBXC)
Low shock 1.25	Low 1	Constant 0.9	1.13
Medium shock 1.5	Medium 1.25	Daily 1.2	2.25
High shock 1.75	High 1.5	Monthly 2.5	6.56

Tab. 2

Maximum transmissible torque = Maximum torque 400 / Safety factor $1,575 \leq 254 \mathrm{Nm}$
For heavy-duty applications, please ask our technical dept. to carry out the appropriate checks.

The Tecline range includes a series of hollow shafts for connecting the pinions on the systems. We can supply standard connections, according to your application requirements. The complete kit includes all the components needed to make the connection, with shrink-discs and crop down sizes of pins for insertion into the pinions.

Type 1 - Elastic joint with connecting shaft, suitable for low speeds with center-distance and length of up to 2 m .

Type 2 - Stainless steel blade joint connecting shafts, for backlash-free transmissions

Type 3 - Stainless steel blade joint connecting shafts and support bearings, suitable for backlash-free transmissions

R(*)	K	F	N	S	$L_{\text {max }}$	MTwork [Nm]	Mom. of inertia [kgm]	Type 1: Code/L	Type 2: Code/L	Type 3: Code/L
40	67	55	20	200	6,200	20	$0.0028+0.46 \times \mathrm{L} . \times 10^{-6}$	436.0948	436.0957	436.0965
50	81	65	25	235	6,300	35	$0.0092+0.66 \times \mathrm{L} . \times 10^{-6}$	436.0949	436.0958	436.0966
50	93	80	25	235	6,300	70	$0.0161+1.34 \times \mathrm{L} . \times 10^{-6}$	436.0951	436.0971	436.0974
70	104	95	25	235	6,400	100	$0.0293+2.93 \times \mathrm{L} . \times 10^{-6}$	436.0952	436.0960	436.0968
80	126	120	25	250	6,400	190	$0.0793+4.5 \times \mathrm{L} . \times 10^{-6}$	436.0955	436.0963	436.0984
90	143	-	-	-	6,500	300	$0.1456+6.53 \times \mathrm{L} . \times 10^{-6}$	-	436.0986	436.0987
110	185	-	-	-	6,000	420	$0.3499+12.3 \times \mathrm{L} . \times 10^{-6}$	436.0144	436.0145	436.0146

[^0]
Rollers and V-shaped guide rails 28.6x11 and 35x16

Material: Hardened and burnished C45 steel covering; burnished steel pins and bolts. Rollers with shaped plastic cover are available upon request. Rollers with longer centre-distance L can be supplied.

$P_{A 1}=\frac{G \cdot Y}{X}=P_{A 2}$
$P_{R 1}=G+P_{A 1}$
$P_{\text {R2 }}=P_{\text {A2 }}$
$X=A+20 \mathrm{~mm}$

$P_{A 1}=\frac{G \cdot Y}{X}$
$P_{A 2}=P_{A 1}+G$
$X=A+20 \mathrm{~mm}$

$P_{A 1}=\frac{G \cdot Y}{W+Y}$
$P_{A 2}=G-P_{A 1}$
$X=A+20 \mathrm{~mm}$

V-shaped rollers (Guide Rails 28.6×11) anti-oxidized version

Shaped rollers with radial bearings with 2RS sealing (medium version).

* IMPORTANT: upon request, spacers can be supplied to increase the centre-distance between the guide rail and the roller supporting surface. In addition to the roller code, please indicate the required centre-distance (L). e.g. 205.0013.L

(* upon request)

Version	Type	Bearing	PR[N$]$	PA $[\mathrm{N}]$	Speed $[\mathrm{m} / \mathrm{s}]$	Weight $[\mathrm{kg}]$	Code
Medium	Conc.	radial bearing	1,400	600	2,5	0.8	$\mathbf{2 0 5 . 0 0 1 3}$
Medium	Exc.	radial bearing	1,400	600	2,5	0.8	$\mathbf{2 0 5 . 0 0 1 4}$

V-shaped rollers [rails 35×16] integrale

Shaped rollers with two rows of angular contact ball bearings. With bilateral sliding sealing rings. Accuracy class P6.
They support loads along the axis of the pin provided Pa eff < 0.4 Pr eff.

* IMPORTANT: upon request, spacers can be supplied to increase the centre-distance between the guide rail and the roller supporting surface. In addition to the roller code, please indicate the required centre-distance (L). e.g. 205.0011.L

Type	Bearing	PR[N]	PA[N]	Speed [m/s]	Weight [kg]	Code
Conc.	angular contact	4,500	1,800	2,5	1	$\mathbf{2 0 5 . 0 0 1 1}$
Exc.	angular contact	4,500	1,800	2,5	1	$\mathbf{2 0 5 . 0 0 1 2}$

$\varnothing 40$ roller slides with 2 or 3 rollers, aluminium alloy castings (Rs=280 N/mm2). $\varnothing 30, \varnothing 40, \varnothing 52$ and $\varnothing 62$ roller slides with 4 or 6 rollers, extruded aluminium alloy ($\mathrm{Rs}=310 \mathrm{~N} / \mathrm{mm} 2$). Alloy steel pins ($\mathrm{Rs}=800 \mathrm{~N} / \mathrm{mm} 2$) Rollers with double rows of angular contact ball bearings, long-life.

Roller slides $\varnothing 40$ (V-shaped 35×16) - $\varnothing 30$ (guide rail 28.6×11)

Roller slides $\varnothing 52$ and $\varnothing 62$ (V-shaped 55×25)

Tilting roller slides with 4 rollers $\varnothing 30$ for V-shaped guide rails 28.6x11

Use the roller slide eccentric pin to adjust the backlash along the plane between the guide rails.

Important: remove the space washers to enable self-alignment of the roller slide

	A Weight [kgl	Code	
	75	1.8	$\mathbf{2 0 4 . 0 0 5 2}$
Roller slide with concentric pin	75	1.8	$\mathbf{2 0 4 . 0 0 5 3}$
Roller slide with excentric pin $(\pm 1 \mathrm{~mm})$	50	1.4	$\mathbf{2 0 4 . 0 0 5 4}$
Roller slide with excencentric pin	50		

Spare parts Complete body with rollers	A	Code
Concentric pin	75	$\mathbf{2 0 4 . 0 0 5 0}$
Excentric pin $(\pm 1 \mathrm{~mm})$	75	$\mathbf{2 3 6 . 0 0 1 0}$
Concentric pin	50	$\mathbf{2 3 6 . 0 0 1 1}$
Excentric pin $(\pm 1 \mathrm{~mm})$	50	$\mathbf{2 3 6 . 0 0 1 4}$

2 Roller slides $\varnothing 40$ for V-shaped guide rails 35×16

Please follow the diagrams below to ensure correct assembly. To make up for the tolerances in the profile shapes, use pins to lock carriages with eccentric rollers after placing them in the appropriate position. (With the eccentric pins in the neutral position).

Side 1

Roller side 1	Roller side 2	Specification	Weight [Kg]	Code
Concentric	Concentric	2-rollers carriage Ø40-concentric	1	204.2072
Excentric	Concentric	2-rollers carriage Ø $040-1$ exc. side 1	1	204.2071
Concentric	Excentric	2 -rollers carriage Ø$¢ 0-1$ exc. side 2	1	204.0004
Excentric	Excentric	2-rollers carriage $\varnothing 40$ - excentric	1	204.0019

Application diagram common to 2-roller slides

3-Roller slides Ø 40 for V-shaped guide rails 35×16

Please follow the diagrams below to ensure correct assembly. To make up for tolerances in the profile shapes, use pins to lock carriages with eccentric rollers after placing them in the appropriate position. (With the eccentric pins in the neutral position).

Side 1

Rollers side	Rollers side 2		Specification	Weight [kg]	Code
1 concentric	2 concentric	3-rollers carriage $\varnothing 40-$ concentric	1.3	$\mathbf{2 0 4 . 1 5 7 9}$	
1 eccentric	2 concentric	3-rollers carriage $\varnothing 40-1$ exc. side 1	1.3	$\mathbf{2 0 4 . 0 4 7 4}$	
2 concentric	1 concentric	3-rollers carriage $\varnothing 40-$ concentric	1.3	$\mathbf{2 0 4 . 2 3 0 2}$	
2 concentric	1eccentric	3-rollers carriage $\varnothing 40-1$ exc. side 2	1.3	$\mathbf{2 0 4 . 0 4 7 5}$	

Application diagram common to 3-roller slides

Tilting roller slides with 4 rollers $\varnothing 40$ for V-shaped guide rails 35×16
Use the roller slide eccentric pin to adjust the backlash along the plane between the guide rails.tino.

Important: remove the spacer washers to enable self-alignment of the roller slide

	A Weight [kgl		
	Code		
Slide with eccentric stud $(\pm 1 \mathrm{~mm})$	75	2.2	$\mathbf{2 0 4 . 0 0 1 6}$
Slide with eccentric stud $(\pm 1 \mathrm{~mm})$	50	1.8	$\mathbf{2 0 4 . 0 0 3 3}$

All pins are eccentric, but are made concentric by inserting the pin in the

Spare parts Complete body with rollers	A	Code
Eccentric stud $(\pm 1 \mathrm{~mm})$	75	$\mathbf{2 0 4 . 0 0 1 3}$
Eccentric stud $(\pm 1 \mathrm{~mm})$	50	$\mathbf{2 3 6 . 0 0 1 1}$

Fixed 4-roller slide $\varnothing 40$ for V-shaped guide rails V 35x16
Use the roller slide eccentric stud to adjust the backlash along the plane between the guide rails.

	A	Code
R. slide $L=370$ complete with exc. pin $(\pm 1 \mathrm{~mm})$	75	$\mathbf{2 0 4 . 0 0 1 8}$
R. slide $L=600$ complete with exc. pin $(\pm 1 \mathrm{~mm})$	75	$\mathbf{2 0 4 . 0 0 2 8}$
R. slide $L=370$ complete with exc. pin $(\pm 1 \mathrm{~mm})$	50	$\mathbf{2 0 4 . 0 0 3 1}$
R. slide $L=600$ complete with exc. pin $(\pm 1 \mathrm{~mm})$	50	$\mathbf{2 0 4 . 0 0 3 5}$

R. slide spare parts (2)	B	C	D	E	Code
Roller slide $L=370$	370	320	276	180	$\mathbf{2 0 4 . 0 0 0 5}$
Roller slide L=600	600	550	506	410	$\mathbf{2 0 4 . 0 0 2 6}$

Pin spare parts (1)	A	Weight [kg]	Code
Eccentric stud $(\pm 1 \mathrm{~mm})$	75	4.1	$\mathbf{2 3 6 . 0 0 1 1}$
Eccentric stud $(\pm 1 \mathrm{~mm})$	50	3.5	$\mathbf{2 3 6 . 0 0 1 5}$

E type roller slides (roller Ø52) and F type (roller Ø62) for V-shaped guide rails 55×25

4-Stiff Rollers slide. Suitable for mounting stud: Type 7-8
Use the roller slide eccentric stud to adjust the backlash along the plane between the guide rails.
Important: machine the pin clamping plate as shown in Fig. A

Ø Rollers		Rif. A
Rollers $\varnothing 52$	$\mathbf{7 1 . 7 5}$	
Rollers Ø62		$\mathbf{7 8 . 8 5}$
Technical caracteristics	Ø52	Ø62
N° rollers	4	4
Weight [kg.]	4.6	5.2
Spare parts code	$\mathbf{2 0 4 . 1 5 1 8}$	$\mathbf{2 0 4 . 1 5 1 9}$

K version

inverted roller position see page TL-63

Type G roller slides (roller Ø52) and H type (roller Ø62) for V-shaped guide rails 55x25

Tilting 4-roller slides Suitable for assembly pins: Type 9
Use the roller slide eccentric pin to adjust the backlash along the plane between the guide rails.

I-type roller slides (roller Ø52) and L-type (roller Ø62) for V-shaped guide rails V 55x25

Tilting 4-roller slides Suitable for assembly pins: Type 9
Use the roller slide eccentric pin to adjust the backlash along the plane between the guide rails.

P-type roller slides (rollers Ø52) and Q-type (rollers Ø62) for V-shaped guide rails 55x25

Fixed 4-roller slides Suitable for assembly pins: Type 10-11-12
Use the roller slide eccentric bin to adiust the backlash alona the plane between the guide rails.

Spare roller with stud
Make sure that all the components are locked in place with the appropriate screws. The recommended tightening torque for pin locking screws and nuts is 50 Nm .

Max. load factors for induction-hardened guides

Material: burnished steel (Rs=800 N/mm2). Special variants upon request. AISI 303 stainless steel versions are available upon request. Types 0-7-8-9 are complete with self-lubricating bushings to make roller slide self-adjustments easier.

Type 0 assembly pins suitable for roller slide $\varnothing 30$ and $\varnothing 40$

Important: machine the pin clamping plate as shown in Fig. A

Important: remove the spacer washers to enable self-alignment of the roller slide

Technical caracteristics	A	
Weight [kg.]		1.1 approx.
Eccentric code $(\pm 0,75 \mathrm{~mm})$	75	$\mathbf{2 3 6 . 0 0 1 1}$
Eccentric code $(\pm 0,75 \mathrm{~mm})$	50	$\mathbf{2 3 6 . 0 0 1 5}$

Type 7 assembly pins suitable for roller slide E-F
Important: machine the pin clamping plate as shown in Fig. A

Type 9 assembly pins suitable for tilting roller slides G-H / I-L

Important: remove the spacer washers to enable self-alignment of the roller slide

Technical caracteristics	
Weight [kg.]	2 approx.
Concentric code	$\mathbf{2 3 6 . 2 0 7 6}$
Excentric code $(\pm 1,5 \mathrm{~mm})$	$\mathbf{2 3 6 . 2 0 7 9}$

Type 10-11-12 assembly pins suitable for tilting roller slides P-Q

Type A	B	C Weight [kg] Conc.code	Exc. code $(\pm 1.5 \mathrm{~mm})$			
10	95	73	35	2		$\mathbf{2 3 6 . 2 0 8 3}$
11	87	65	27	1.8	$\mathbf{2 3 6 . 2 0 8 8}$	$\mathbf{2 3 6 . 2 0 8 9}$

$\xrightarrow{68} 69,5$		Roller	sl. E	F	G	H	I	L	P	Q
		\varnothing roller	52	62	52	62	52	62	52	62
	듬	con.	-	-	-	-	-	-	-	-
	7	exc.	204.1344	204.1348	-	-	-	-	-	-
	8	con.	-	-	-	-	-	-	-	-
		exc.	204.1345	204.1349	-	-	-	-	-	-
62	9	con.	-	-	204.2092	204.2093	204.2094	204.2095	-	-
		exc.	-	-	204.2102	204.2103	204.2104	204.2105	-	-
	10	con.	-	-	-	-	-	-	204.2096	204.2097
		exc.	-	-	-	-	-	-	204.2106	204.2107
	11	con.	-	-	-	-	-	-	204.2098	204.2099
		exc.	-	-	-	-	-	-	204.2108	204.2109
$\xrightarrow[\underset{\sim}{76}]{\stackrel{78}{\rightarrow}}{ }^{62}$	12	con.	-	-	-	-	-	-	204.2100	204.2101
		exc.	-	-	-	-	-	-	204.2110	204.2111

Assembly of standard carriages / K version carriages
IMPORTANT: for applications with high projecting loads, the rollers of the slides must be adjusted so that the load is supported by the maximum possible number of rollers. If this means arranging the rollers symmetrically with respect to the standard roller slide version, please add the letter K at the end of the code when filling in the order form. However, the roller assembly can also be inverted at a later date, by disassembling the pins and rollers and then reassembling them in the opposite way.

Ant-droop devices, available in a range of sizes, are supplied according to the type of application. For instance, they can act as a mechanical stop to block the free-falling load at any stroke point, or as a lock in static conditions at any position.
Two-way blocking occurs following an unexpected pressure drop.
A mechanical release system is available on request (patented). Catalogue available upon request.
The kit includes: braking device and rod with relative supports, micro-switch. Solenoid valve available upon request.
Operating pressure 3-6 Bar.

1- Static rod blocking device

Type Codice	Rod Blocking force [N]	Stroke [mm]	Emergency brake for free-falling load			
A 236.0018	/ 1,200	/ ...	1- Dynamic rod blocking device			
A 236.0018	/ 1,900	1 ...	Type	Code	Rod Blocking force [N]	Stroke [mm]
A 236.0018	/ 3,000	/ ...	B	236.0019	/ 3,000	/ ...
A 236.0018	/ 5,400	/ ...	B	236.0019	/ 5.400	/ ...
A 236.0018	/ 7,500	/ ...	B	236.0019	/ 7,500	/ ...
A 236.0018	/ 12,000	/ ...	B	236.0019	/ 12,000	/ ...

Lock-pin (stopper cylinder)

Lock-pins are available in two sizes to block the vertical axes in position to allow horizontal movements during maintenance. The lock-pins comprise the use of the through rod. Select the size according to the load. The kit includes: drilled plate for rod, stopper cylinder, micro-switch and 2 magnetic gearboxes.
Max. operating pressure: 10 bar.

1- Lock-pin

ØD Rod	Stroke	C	E	F	G	Kit Code
$\mathbf{2 0}$	20	60.5	50	38	16	$\mathbf{2 3 6 . 0 0 2 1}$
$\mathbf{3 2}$	30	-	-	-	-	$\mathbf{2 3 6 . 0 0 2 2}$

2- Accessory: drilled plate for rod

ØD Rod	Base	Width	Thickness
$\mathbf{2 0}$	60	100	39
$\mathbf{3 2}$	60	100	39

Material: alluminium alloy ($\mathrm{Rs}=310 \mathrm{~N} / \mathrm{mm}^{2}$).

Profile	A	L	T	d	H	P	C	\mathbf{F}	\mathbf{B}	\mathbf{M}	single code	double code
E01-4;E01-5	30	50	25	9	25	9.5	18	12	22	$69 / 114$	$\mathbf{4 1 5 . 0 7 7 2}$	$\mathbf{4 1 5 . 0 7 7 3}$
MA1-5	25	50	25	6.7	27	6.8	20.6	10	18	120	$\mathbf{4 1 5 . 0 7 6 9}$	$\mathbf{4 1 5 . 0 7 6 4}$
STATYCA	30	90	50	11	40	11	28.3	14	25	198	$\mathbf{4 1 5 . 0 7 6 7}$	$\mathbf{4 1 5 . 0 7 6 2}$
VALYDA horizontal	30	90	50	11	40	11	28.3	14	25	228	$\mathbf{4 1 5 . 0 7 6 7}$	$\mathbf{4 1 5 . 0 7 6 2}$
VALYDA vertical	30	90	50	11	50	11	43.1	14	25	148	$\mathbf{2 1 5 . 0 0 4 2}$	$\mathbf{2 1 5 . 0 0 4 1}$
LOGYCA	30	90	50	11	40	11	28.3	14	25	248	$\mathbf{4 1 5 . 0 7 6 7}$	$\mathbf{4 1 5 . 0 7 6 2}$
PRATYCA horizontal	30	90	50	11	20	11	11.3	14	25	308	$\mathbf{4 1 5 . 0 7 6 8}$	$\mathbf{4 1 5 . 0 7 6 3}$
PRATYCA vertical	30	90	50	11	25	11	13.5	14	25	198	$\mathbf{-}$	$\mathbf{9 1 5 . 1 1 7 4}$
SOLYDA horizontal	30	90	50	11	20	11	11.3	14	25	308	$\mathbf{4 1 5 . 0 7 6 8}$	$\mathbf{4 1 5 . 0 7 6 3}$
SOLYDA vertical	30	90	50	11	25	11	13.5	14	25	198	$\mathbf{-}$	$\mathbf{9 1 5 . 1 1 7 4}$

Threaded hole bracket

Threaded hole bracket for mounting additional equipment.

Material: 6060 clear anodized aluminium alloy.

Series A30-7/30-5

Series A30-8/30-6
Series A30-7/30-5

A	B	C	D	E	S	Txt	M	Code	Ø	Code
45	45	20	25	25	5	15×6.5	M6	A30-86	6	A30-76
35	25	20	19	15	5	20×6.5	M4	A30-64	4	A30-54
35	25	20	19	15	5	20×6.5	M5	A30-65	5	A30-55
35	25	20	19	15	5	20×6.5	M6	A30-66	6	A30-56
25	25	15	14	15	4	13.5×5.5	M3	B30-63	3	B30-53
25	25	15	14	15	4	13.5×5.5	M4	B30-64	4	B30-54
25	25	15	14	15	4	13.5×5.5	M5	B30-65	5	B30-55
25	25	15	14	15	4	13.5×5.5	M6	B30-66	6	B30-56

Series A30-8/30-6

Bracket for mounting additional equipment

L-shaped bracket for mounting additional equipment and improving the rigidity of frames made with profiles.
Material: 6060 clear anodized aluminium alloy.

A	B	C	D	E	Ø	M	Code
60	20	8	45	-	6,5	-	B30-10
60	20	8	45	-	6.5	M6	B30-20
60	30	8	45	-	9	-	A30-10
60	30	8	45	-	9	M6	A30-20
38	30	8	25	-	9	-	A30-00
31	20	6	20	-	6.5	-	C30-00

Bracket for mounting additional profiles

Material: 6060 clear anodized aluminium alloy.

A	B	C	D	E	Ø	M	Code
38	80	8	25	50	9	-	A30-02
31	60	6	20	40	6.5	-	C30-02

Bracket for mounting additional profles

Material: 6060 clear anodized aluminium alloy

The end caps for STATYCA, VALYDA, and LOGYCA (supplied with 4 bushings 207.1892 thr. M20/6) are fixed to the profiles using the 4 holes provided in the centre that must be M20 threaded. PRATYCA and SOLYDA profiles must instead be M6 drilled and threaded as in the areas indicted in the drawing (in this case the end caps are supplied without any bushings). Please specify whether profiles will require end caps.
Material: black polyethylene, 6 mm thick. End caps in 6 mm -thick aluminium alloy are available upon request.

Bearing profile	L	h	A	B	C	D	Code
202.1753 - STATYCA	170	120	100	50	-	-	$\mathbf{2 1 2 . 1 7 7 4}$
$202.1146-$ VALYDA	200	120	100	50	-	-	$\mathbf{2 1 2 . 1 7 0 4}$
$202.2184-$ LOGYCA	220	120	150	50	-	-	$\mathbf{2 1 2 . 2 2 7 9}$
$202.1147-$ PRATYCA	280	170	254	115	195.5	39	$\mathbf{2 1 2 . 1 7 0 5}$
$202.0342-$ SOLYDA	360	200	328	141	265	40	$\mathbf{2 1 2 . 1 7 0 6}$

The end caps for small and medium profiles (E40.60 type excluded wich instad has screws) have no screws or bushes and are fitted simply by exerting moderate pressure on the end of the profile.
Material: black polyethylene, approx. 5 mm thick.

Profile	L	h	Code
E01-4	90	90	E40-40
E01-5	180	90	E40-60
MA1-5	100	100	A40-50

Long cams (type B)

Cams in accordance with DIN 69639 except when marked "\#".
Material: steel with hardened and ground surface.

A	B	Code
25	59	$\mathbf{2 1 1 . 2 1 3 2}$
40	74	$\mathbf{2 1 1 . 2 1 3 3}$
63	97	$\mathbf{2 1 1 . 2 1 3 4}$
$80 \#$	114	$\mathbf{2 1 1 . 2 1 3 5}$
100	134	$\mathbf{2 1 1 . 2 1 3 6}$

Short cams (type A)

Cams in accordance with DIN 69639
Material: steel with hardened and ground surface.

C	D	Code
0	25	$\mathbf{2 1 1 . 2 1 2 8}$
4	29	$\mathbf{2 1 1 . 2 1 2 9}$
10	35	$\mathbf{2 1 1 . 2 1 3 0}$
16	41	$\mathbf{2 1 1 . 2 1 3 1}$

Cam-holder guide rails

Cams in accordance with DIN 69638
Material: 6060 clear anodized aluminium alloy.

\mathbf{n}°	\mathbf{B}	\mathbf{A}	\mathbf{L}	Code
3	3	36	3,000	$\mathbf{2 0 2 . 2 1 3 8}$
4	5.5	53	3,000	$\mathbf{2 0 2 . 2 1 3 9}$
6	5.5	77	3,000	$\mathbf{2 0 2 . 2 1 4 0}$
8	5.5	101	3,000	$\mathbf{2 0 2 . 2 1 4 1}$

Inserts for base profiles 30/45/50/60

Material: galvanised steel.
Important: inserts must be inserted into the T-slots before assembling.

Thread	A-B-C Code	Thread	A-B-C Code
M3	B32-30	M4	A32-40
M4	B32-40	M5	A32-50
M5	B32-50	M6	A32-60
M6	B32-60	M8	A32-80
Spring	$\mathbf{2 1 1 . 1 0 7 7}$	Spring	$\mathbf{2 1 1 . 1 0 6 1}$

Square nuts

Also suitable for profiles STATYCA, VALYDA, LOGYCA, PRATYCA and SOLYDA.
Material: galvanised steel.
Important: inserts must be inserted into the longitudinal slots before assembling.

Thread	Code 18x18	Code 20x20
M4	209.0031	209.0023
M5	209.0032	209.0019
M6	209.0033	209.1202
M8	209.0034	209.0467

Plastic compound spring for vertical positioning of insert.

Spring	Code
Suitable for all inserts 18×18	101.0732

Frontally insertable alignment plates
Material: galvanised steel.
Important: inserts must be inserted into the T-slots before assembling.

Frontally insertable alignment plates
Material: galvanised steel.

Threaded inserts

Also suitable for base-50 profiles, except A32-91 insert. Material: galvanised steel.

Thread	N. holes	L	Code
M10	1	40	$\mathbf{2 1 5 . 0 4 7 7}$
M12	1	40	$\mathbf{2 0 9 . 1 2 8 1}$
M10	1	20	$\mathbf{2 0 9 . 1 2 7 7}$
M10	2	80	$\mathbf{2 0 9 . 1 7 7 6}$
M10	3	150	$\mathbf{2 0 9 . 1 7 7 7}$
M10	4	200	$\mathbf{2 0 9 . 1 7 7 8}$
M10	5	250	$\mathbf{2 0 9 . 1 7 7 9}$
M10	6	300	$\mathbf{2 0 9 . 1 7 8 0}$
M10	7	350	$\mathbf{2 0 9 . 1 7 8 1}$

Dovetail inserts for VALYDA profile

Material: burnished C40.
Important: inserts must be inserted into the longitudinal slots before assembling.
Special sizes are available upon request.

Reader system with magnetic scale and sensor

The magnetic scale is applied to the body of the module using a supporting and protective profile.
Precision from ± 0.015 to $\pm 0,05 \mathrm{~mm}$
Max. speed $=4-10 \mathrm{~m} / \mathrm{s}$ (according to type)

Index

Code	page										
1010732	TL-75	2041348	TL-68	2091779	TL-76	2152243	TL-57	A30-10	TL-71	PAR 8/3	TL-46
1010744	TL-61	2041349	TL-68	2091780	TL-76	2152281	TL-57	A30-20	TL-71	PAR 8/6	TL-48
1011079	TL-61	2041518	TL-63	2091781	TL-76	2152368	TL-57	A30-30	TL-72	PAS 1	TL-17
1160051	TL-61	2041519	TL-63	2091855	TL-55	2152369	TL-57	A30-40	TL-72	PAS 1/05	TL-33
1160050	TL-61	2041520	TL-64	2111061	TL-75	2360010	TL-61	A30-54	TL-71	PASM 10	TL-31
7360332	TL-61	2041521	TL-64	2111077	TL-75	2360011	TL-61	A30-55	TL-71	PASM 10/6	/6 TL-51
2010005	TL-57	2041522	TL-64	2112128	TL-74	2360014	TL-61	A30-56	TL-71	PASM 10/	/8 TL-53
2010007	TL-57	2041523	TL-64	2112129	TL-74	2360015	TL-61	A30-64	TL-71	PASM 2	TL-19
2010009	TL-57	2041579	TL-62	2112130	TL-74	2360018	TL-69	A30-65	TL-71	PASM $2 / 1$	1 TL-35
2010012	TL-57	2042071	TL-61	2112131	TL-74	2360019	TL-69	A30-66	TL-71	PASM 3	TL-21
2010013	TL-57	2042072	TL-61	2112132	TL-74	2360021	TL-69	A30-76	TL-71	PASM 3/1	1 TL-37
2010014	TL-57	2042086	TL-65	2112133	TL-74	2360022	TL-69	A30-86	TL-71	PASM 4	TL-23
2010015	TL-57	2042092	TL-68	2112134	TL-74	2361689	TL-66	A32-40	TL-77	PASM 4/1	1 TL-39
Logyca		2042093	TL-68	2112135	TL-74	2361691	TL-67	A32-50	TL-77	PASM 5	TL-25
2022138	TL-74	2042094	TL-68	2112136	TL-74	2362076	TL-67	A32-80	TL-77	PASM 5/2	TL-41
2022139	TL-74	2042095	TL-68	2112349	TL-56	2362079	TL-67	A32-91	TL-76	PASM 6	TL-27
2022140	TL-74	2042096	TL-68	2112351	TL-56	2362082	TL-67	A40-50	TL-73	PASM 6/2	TL-43
2022141	TL-74	2042097	TL-68	2112363	TL-56	2362083	TL-67	B20-10	TL-71	PASM 6/4	4 TL-45
P28	TL-54	2042098	TL-68	2112366	TL-56	2362088	TL-67	B20-20	TL-71	PASM 8	TL-29
P35	TL-54	2042099	TL-68	2112367	TL-56	2362089	TL-67	B30-30	TL-72	PASM 8/3	TL-47
P55	TL-54	2042100	TL-68	2112429	TL-56	2362090	TL-67	B30-40	TL-72	PASM 8/6	TL-49
P28.F	TL-54	2042101	TL-68	2121704	TL-73	2362091	TL-67	B30-53	TL-71		
P35.F	TL-54	2042102	TL-68	2121705	TL-73	4060056	TL-68	B30-54	TL-71		
P55.F	TL-54	2042103	TL-68	2121706	TL-73	4150762	TL-70	B30-55	TL-71		
P28.x	TL-54	2042104	TL-68	2121774	TL-73	4150763	TL-70	B30-56	TL-71		
P35.x	TL-54	2042105	TL-68	2122279	TL-73	4150764	TL-70	B30-63	TL-71		
P55.x	TL-54	2042106	TL-68	2140388	TL-77	4150767	TL-70	B30-64	TL-71		
P28.fx	TL-54	2042107	TL-68	2140389	TL-77	4150768	TL-70	B30-65	TL-71		
P35.fx	TL-54	2042108	TL-68	2140391	TL-77	4150769	TL-70	B30-66	TL-71		
P55.fx	TL-54	2042109	TL-68	2140393	TL-77	4150772	TL-70	B32-30	TL-75		
P28.xx	TL-55	2042110	TL-68	2140394	TL-77	4150773	TL-70	B32-40	TL-75		
P35.xx	TL-55	2042111	TL-68	2140395	TL-77	4360144	TL-59	B32-50	TL-75		
P55.xx	TL-55	2042283	TL-65	2140398	TL-77	4360145	TL-59	B32-60	TL-75		
P28.fxx	TL-55	2042302	TL-62	2140400	TL-77	4360146	TL-59	C30-02	TL-72		
P35.fxx	TL-55	2050011	TL-60	2140430	TL-77	4360948	TL-59	E01-4 ${ }_{90 \times 90}$	90) TL-12		
P55.fxx	TL-55	2050012	TL-60	2140431	TL-77	4360949	TL-59	E01-5 90×18	80) TL-13		
2040004	TL-61	2050013	TL-60	2140433	TL-77	4360951	TL-59	E40-40	TL-73		
2040005	TL-63	2050014	TL-60	2140435	TL-77	4360952	TL-59	MA1-5	TL-12		
2040013	TL-62	2050053	TL-61	2150025	TL-57	4360955	TL-59	PAR 1	TL-16		
2040016	TL-62	2050163	TL-65	2150026	TL-57	4360957	TL-59	PAR 1/05	TL-32		
2040018	TL-63	2050165	TL-65	2150027	TL-57	4360958	TL-59	PAR 10	TL-30		
2040019	TL-61	2050463	TL-65	2150028	TL-57	4360960	TL-59	PAR 10/6	TL-50		
2040026	TL-63	2050464	TL-65	2150041	TL-70	4360963	TL-59	PAR 10/8	TL-52		
2040028	TL-63	2090019	TL-75	2150042	TL-70	4360965	TL-59	PAR 2	TL-18		
2040031	TL-63	2090023	TL-75	2150477	TL-76	4360966	TL-59	PAR 2/1	TL-34		
2040033	TL-62	2090298	TL-55	2151768	TL-76	4360968	TL-59	PAR 3	TL-20		
2040035	TL-63	2090467	TL-75	2151769	TL-76	4360971	TL-59	PAR 3/1	TL-36		
2040050	TL-61	2090479	TL-55	2151770	TL-76	4360974	TL-59	PAR 4	TL-22		
2040052	TL-61	2090480	TL-55	2151771	TL-76	4360984	TL-59	PAR 4/1	TL-38		
2040054	TL-61	2091202	TL-75	2151772	TL-76	4360986	TL-59	PAR 5	TL-24		
2040055	TL-61	2091277	TL-76	2151773	TL-76	4360987	TL-59	PAR 5/2	TL-40		
2040474	TL-62	2091281	TL-76	2152078	TL-57	7400568	TL-12	PAR 6	TL-26		
2040475	TL-62	2091776	TL-76	2152124	TL-76	9151174	TL-70	PAR 6/2	TL-40		
2041344	TL-68	2091777	TL-76	2152125	TL-76	A30-00	TL-71	PAR 6/4	TL-44		
2041345	TL-68	2091778	TL-76	2152137	TL-57	A30-02	TL-72	PAR 8	TL-28		

ROLLON

Linearevolution

ROLLON S.p.A. - ITALY

Via Trieste 26
I-20871 Vimercate (MB)
Phone: (+39) 03962591
www.rollon.it - infocom@rollon.it

Branches:

ROLLON GmbH - GERMANY

Bonner Strasse 317-319
D-40589 Düsseldorf
Phone: (+49) 211957470
www.rollon.de - info@rollon.de

ROLLON S.A.R.L. - FRANCE

Les Jardins d'Eole, 2 allée des Séquoias
F-69760 Limonest
Phone: (+33) (0) 474719330
www.rollon.fr - infocom@rollon.fr

ROLLON Ltd - CHINA

2/F Central Plaza, No. 227 North Huang Pi Road,
China, Shanghai, 200003
Phone: (+86) 02123165336
www.rollon.cn.com - info@rollon.cn.com

ROLLON B.V. - NETHERLANDS

Ringbaan Zuid 8
6905 DB Zevenaar
Phone: (+31) 316581999
www.rollon.nl - info@rollon.nl

ROLLON Corporation - USA

101 Bilby Road. Suite B
Hackettstown, NJ 07840
Phone: (+1) 9733005492
www.rolloncorp.com - info@rolloncorp.com

ROLLON India Pvt. Ltd. - INDIA

1st floor, Regus Gem Business Centre, 26/1 Hosur Road, Bommanahalli, Bangalore 560068 Phone: (+91) 8067027066
www.rollonindia.in - info@rollonindia.in

Rep. Offices:

ROLLON S.p.A. - RUSSIA

117105, Moscow, Varshavskoye shosse 17, building 1, office 207.
Phone: +7 (495) 508-10-70
www.rollon.ru - info@rollon.ru

ROLLON Ltd - UK

The Works 6 West Street Olney
Buckinghamshire, United Kingdom, MK46 5 HR
Phone: +44 (0) 1234964024
www.rollon.uk.com - info@rollon.uk.com
Regional Manager:

ROLLON - SOUTH AMERICA

R. Joaquim Floriano, 397, 20. andar Itaim Bibi - 04534-011, São Paulo, BRASIL Phone: +55 (11) 31983645
www.rollonbrasil.com.br - info@rollonbrasil.com

Consult the other ranges of products

All addresses of our global sales partners can also be found at www.rollon.com

[^0]:

